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1 Executive summary 

During year 1 of the project WP2 has focussed on further developing the concept of Uncertainty 

Quantification Patterns (UQPs). Firstly, a family of semi-intrusive multiscale UQ algorithms is 

proposed, and partly tested on a set of cyclic multiscale models, demonstrating that indeed such 

semi-intrusive methods are capable of estimating the output uncertainties in a reliable way, while at 

the same time reducing the required execution time of the overall multiscale UQ.  

 

Based on this experience, and guided by the Multiscale Modelling and Simulation Framework, a 

family of UQPs is designed. The main result is a distinction in control structure, leading to five 

different variants. All these variants can then be further refined using optimisation strategies.  

 

An interesting and important result is that all variants of UQPs build upon the most basic ‘black box’ 

UQP1. This UQP has been implemented in the VECMA toolkit in WP3, relying on generic UQ Elements 

(UQEs) that can be realised in software. The design considerations for the software developments, 

based on the UQPs and the concept of UQEs, are also reported in this deliverable. 

 

WP2 is on track, next steps will be to further explore and develop the UQPs and to realise multiscale 

V&V. 

2 Algorithms and Uncertainty Quantification  

2.1 Introduction 

The objectives of Workpackage 2, Algorithms & Formalisms, is to develop algorithms for Multiscale 

Uncertainty Quantification (UQ), to generalize these algorithms to Uncertainty Quantification Patterns 

(UQPs), to scale and optimize them for existing petascale and emerging exascale architectures, and to 

develop methods for verification and validation of multiscale simulations and capture these into 

Verification and Validation primitives (VVPs). 

 

Task 2.1 (Multiscale UQ algorithms based on non-intrusive MC and semi-intrusive MC) and task 2.2 

(UQP development based on task 2.1) started as planned, and task 2.1 was finalised as planned in M12 

of the project. The achievements of these tasks are presented in sections 2.2 - 2.4.  
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2.2 Algorithms for Multiscale Uncertainty Quantification 

2.2.1 Introduction 

Computer modelling is widely used in science and engineering to study systems of interest and to 

predict their behaviour. These systems are usually multiscale in nature, as their accuracy and reliability 

depend on the correct representation of processes taking place on several length and time scales [1–4]. 

Moreover, these multiscale systems can be stochastic, since there are always some unresolved scales, 

whose effects are not taken into account due to lack of knowledge or limitations of computational 

power [2,5]. Additionally, measurements of model parameters, model validation, or initial and 

boundary conditions rarely can be achieved with perfect accuracy [6]. Therefore, the model results 

inevitably contain uncertainties, and one should estimate their magnitudes by applying a forward 

uncertainty quantification (UQ) method.  

 

Usually a distinction is made between intrusive UQ methods, where one substitutes the original model 

with its stochastic representation, and non-intrusive methods, where the original model is used as a 

black-box [7,8]. Intrusive methods are efficient and relatively easy to apply to linear models, e.g. [9]. 

This, however, represents only a relatively small class of models. They can be applied to non-linear 

models as well, but the solution of the resulting equations may become very demanding. Non-intrusive 

methods can be applied to any type of non-linear model. However, if a single model run requires large 

execution times, these UQ methods may be ineffective, or even computationally intractable. 

 

We introduce a family of semi-intrusive UQ algorithms for multiscale models, see also [10]. These 

methods are called semi-intrusive, since they are intrusive only on the level of the multiscale model, 

that is, in the way the single scale components are coupled together. The single scale components 

themselves however are treated as black-boxes, see Figure 1.  

 
Figure 1: Intrusiveness of UQ methods. 
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In the semi-intrusive metamodeling approach a surrogate model substitutes the most expensive single 

scale model. The metamodel can be constructed by applying, for example, a data-driven approach, like 

Gaussian process regression [11–14], or using a spectral approach, for instance, based on polynomial 

chaos [15–17]. A comparison of polynomial chaos and Gaussian process surrogates is presented in 

[18]. Since only one component of the multiscale model is approximated by the surrogate, the 

resulting error in the model output can be small enough to still be able to obtain reliable uncertainty 

estimates. However, it is expected that this strongly depends on the sensitivity of the output of the 

multiscale model on that of the single scale component and the method used to build a surrogate of 

that single scale component. 

 

In the semi-intrusive Monte Carlo (SIMC) method the number of samples for the computationally 

intensive part of the multiscale model (usually microscale dynamics) is reduced. This leads to a 

decrease in the computational time for the multiscale UQ. A cross validation, which is part of the 

method, controls the level of sub-sampling and hence the accuracy of the estimates of uncertainty. 

 

Both the SIMC and metamodeling methods are based on an approximation of the original model 

output. The important difference is that in the SIMC we construct a local data-driven surrogate at each 

call of the micro model. This allows to estimate the effect of the approximation on the uncertainty 

estimates, and adjust the sample size needed. Moreover, in the case of a deterministic multiscale 

model, these local surrogate models have much lower input's dimensionality in comparison to global 

surrogates as used in the metamodeling methods, which equal to the dimensionality of uncertain inputs, 

since at each micro model run a single output can be obtained with a particular value of these 

uncertain inputs. 

 

Before describing in more detail the semi-intrusive methods, a short account of non-intrusive methods 

(as implemented in WP3) is provided in section 2.2.2. 

2.2.2 Non-intrusive methods 

Non-intrusive uncertainty propagation methods consider the entire (multiscale) system as one black 

box, see Figure 2. The main advantage is that the (legacy) simulation code is left completely 

untouched, hence the name ‘non-intrusive’. This allows users to quickly add a UQ component to their 

existing simulation framework.  
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Figure 2: Schematic of non-intrusive uncertainty propagation through a multiscale system of coupled single-

scale solvers, mapping input distributions to a distribution of any output Quantity of Interest (QoI). The 

propagation technique is agnostic with respect to the structure of the multiscale system, and treats it as a black 

box. 

 

To facilitate this, several non-intrusive methods are considered in VECMA, specifically the Monte 

Carlo, Polynomial Chaos and the Stochastic Collocation methods [7]. All these methods follow a 

similar pattern, namely: 

1. Specify the input distributions and draw samples (create a so-called design-of-experiment). 

2. Run the ensemble. 

3. Perform post-processing analysis. 

This common structure is exploited by creating generic UQ Elements for each step. For instance, the 

core functionality required by EasyVVUQ, as developed and implemented in Workpackage 3, of step 

1 (sampling), is contained in a `BaseSamplingElement`. The sampler of any given method, e.g. 

Stochastic Collocation, inherits all base functionality and only adds what is specific to that method. 

This setup makes it easy for an ‘expert user’ to quickly add other propagation methods.  

2.2.3 Semi-intrusive Multiscale methods 

The semi-intrusive methods for multiscale UQ are a family of algorithms, which employ the structure 

of the multiscale models in order to perform an efficient UQ, that is, estimating the uncertainties with 

comparable quality as the black box MC method, but with a substantially reduced execution time. 

According to the Multiscale Modelling and Simulation Framework [19–21], instead of considering the 

whole multiscale model as a black-box, the model can be seen as a collection of coupled single scale 

black-box systems. Thus, the semi-intrusiveness of the methods boils down to a limited inspection of 

the multiscale model, which is only up to the level of single scale components and their coupling. 

Below the main ideas behind the semi-intrusive UQ methods is described. First results on applying 

these methods on test cases and actual applications from the VECMA application portfolio are 

provided. 
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2.2.3.1 Semi-intrusive Monte Carlo 

The semi-intrusive Monte Carlo (SIMC) is a Monte Carlo method with a reduced number of samples 

of the expensive component of the multiscale model, see Figure 3. The remaining samples are 

obtained by interpolation. Usually the interpolation method produces results which are not exact to the 

micro model response. Therefore, a statistical cross-validation is applied to test whether the 

interpolation does not lead to a large error in the estimates of uncertainty: the error is compared to the 

confidence interval of the 𝑁" MC estimate, and then, our algorithm accepts the SIMC results when the 

error is smaller than the confidence interval and the MC results, otherwise. All details can be found in 

[10]. 

 
Figure 3 Semi-intrusive Monte Carlo method with a smaller number of samples of the expensive microscale 

model 

 

2.2.3.2 Metamodeling of a single scale model 

Surrogate modelling is a common approach to perform an efficient UQ for computationally intensive 

systems at a reduced amount of time [16,18]. The idea of these methods is to substitute the original 

system by its surrogate, which produces a similar output, but their computational time is lower. In the 

semi-intrusive multiscale metamodeling method, these techniques are applied to a single scale 

component, which takes the largest portion of the computational time [22]. In this way, the error 

introduced by the approximation is expected to be small when estimating the uncertainties of the 

multiscale model. 

 

Figure 4 shows an example where the micro model is substituted by a surrogate. The rest of the 

multiscale model has the original form. However, since the micro model produces an approximate 
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result, the output of the macro model is not the same as the original model. In this method, the error 

will always depend on the details of the model. It depends on the properties of the micro model, for 

example, smoothness, which determines how difficult it will be to approximate the original single 

scale model. Additionally, the error in the estimates of uncertainty also depends on how sensitive the 

result of the macro model is to the output of the micro model which is replaced by a surrogate. If, for 

instance, this sensitivity is low, it is reasonable to expect that the error introduced by the 

approximation is small. Of course, the error also depends on the method with which the surrogate is 

build. 

 

 
Figure 4: Semi-intrusive multiscale metamodeling uncertainty quantification 

2.3 Uncertainty Quantification Patterns 

2.3.1 From MMSF to UQPs 

With VECMA, we will address the two main aspects of UQ: uncertainty propagation, and sensitivity 

analysis (SA). The former deals with how uncertainties in model inputs and parameters propagate to 

model output uncertainties, i.e. it is about quantifying output uncertainty caused by input uncertainty. 

SA tackles the question of which input uncertainties contribute most to the overall model output 

uncertainty, in the (common) situation of multiple uncertain inputs. The two are closely related, in 

particular, the high computational cost of performing uncertainty propagation with many inputs can be 

reduced by focusing on the inputs found to be most important by SA. Uncertainty Quantification 

Primitives (UQPs) are designed to support both UQ and SA in multiscale applications, and which are 

scalable to the exascale. They provide the basic building blocks, to create tailored UQ for multiscale 

models. In terms of implementation, we anticipate the UQPs to be provided as generic templates, 

which can then be customized and aggregated to create a dedicated UQ procedure for multiscale 

applications.   
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As discussed in section 2.2 it is possible to exploit the structure of a multiscale model to reduce the 

computational requirements of performing a multiscale UQ, the so-calling semi-intrusive UQ, while 

still being able to obtain good estimates of the uncertainties. An important assumption in VECMA is 

that computational requirement of a single multiscale simulation can be so high, that even on Tier0 

machines performing a non-intrusive UQ on the multiscale model would be prohibitive, necessitating 

the need for algorithmic improvements. The Multiscale Modelling and Simulation Framework (MMSF) 

has been developed in earlier EU funded projects, and its main features are summarized in appendix 

4.1. 

2.3.2 Toward UQPs 

Central to VECMA are multiscale models, consisting of several single-scale models and scale bridges 

coupled together. We will exploit this structure to boost the efficiency of UQ for multiscale models. 

The starting point is the availability of non-intrusive methods such as (quasi-)Monte Carlo (MC/qMC), 

Stochastic Collocation (SC), and Non-Intrusive Spectral Projection (NISP). For SA, suitable 

approaches are e.g. Sobol's method and Saltelli's very efficient algorithm to approximate the first order 

Sobol sensitivity indices, posterior density approximations and MCMC-based estimates. A first set of 

UQPs consists of applying these methods to the multiscale model as a whole. We distinguish between 

UQPs employing basic MC and those using more advanced methods such as qMC, SC and NISP. To 

increase efficiency, a further set of UQPs that employ existing non-intrusive methods at the level of 

single-scale models (or scale bridges). These UQPs combine single-scale computations in accordance 

with the multiscale structure to obtain UQ (or SA) results for the multiscale model. We refer to such 

UQPs as ‘semi-intrusive’.  

 

The MMSF allows a characterisation of multiscale models and multiscale computing along several 

dimensions 

• Interaction regions, i.e. scale overlap or scale separation, both temporal and spatial (see Figure 

16), leading to 5 different options; 

• Single domain versus multi-domain, leading two 2 options; 

• Multiscale computing, acyclic versus cyclic (see Figure 18) and the coupling topologies (one, 

versus a fixed or dynamic number of instantiations and one, versus a fixed or dynamic number 

of synchronisation points, see Figure 19) leading to 9 options. 

In principle this would lead to 5 × 2 × 9 = 90  different types of multiscale simulations (when 

coupling only two single scale models together). This is relevant for details of the multiscale 

modelling, and for multiscale computing, but in designing UQPs we need not consider all these 

permutations.  
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As the main goal of the UQPs is to try to exploit the structure of the multiscale model to reduce the 

computational cost of a multiscale UQ, it seems logical to first consider the coupling topologies to 

define UQPs, and then invoke where needed the notion of interaction regions, and finally, of the 

computational domain. Consider a prototypical multiscale model consisting of two submodels, A and 

B, coupled together in the most general sense, see Figure 5. Both A and B take uncertain inputs (initial 

conditions, boundary conditions, parameters, the blue incoming arrows) and both produce Quantities 

of Interest (QoI) with uncertainties (the orange outgoing arrows). 

 

 
Figure 5: prototypical multiscale model. 

 

The simplest UQP, called UQP1, is to not exploit the structure at all, and consider the multiscale 

model as a black box that has inputs and produces outputs, see Figure 6. In UQP1 the UQ and SA is 

performed by using non-intrusive methods on the application as a whole, and quantifying the 

uncertainty relative to a Quantity of Interest (QoI) that resides in the final application output. By 

definition this approach cannot identify the contribution to the UQ from individual submodels of a 

multiscale application. SA will only identify contributions of inputs and parameters that are provided 

as external input to the overall multiscale application. The current VECMA toolkit  provides all 

required functionality to implement UQP1. 

 

 
Figure 6: The non-intrusive UQP1. 

 

The first main distinction that can then be made is acyclic versus cyclic multiscale models, leading to 

three main distinct classes of UQPs, see Figure 7. We call these control structure UQPs, where UQP2 

relates to acyclic multiscale models and UQP3 to cyclic multiscale models. Both UQPs will 

implement semi-intrusive UQ approaches, meaning that the multi scale model is now opened up to 

A B

uncertain 
inputs

<QoI>, 
Var[QoI], 
…

UQP1
non-intrusive
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realise more efficient multiscale UQ algorithms, but the single scale models are still treated as black 

boxes. 

 

 
Figure 7: Three main classes of UQPs. 

 

2.3.3 UPQ2: Semi-Intrusive acyclic 

In case of acyclic structure, uncertainty propagates in one direction through the multiscale model. 

Output uncertainty of one single component creates input uncertainty of another component. UQP2 

performs non-intrusive UQ and SA on consecutive single components. It enables investigation into 

how uncertainty propagates and becomes amplified within each component of the model. 

 

The prototypical acyclic multiscale model is shown in Figure 8, where the main difference with Figure 

5 is that now submodel A feeds into submodel B, but not vice versa. UQP2 can be realised as a serial 

application of UQP1, first to submodel A and then to submodel B, see Figure 9. 

 

 
Figure 8: Prototypical acyclic multiscale model. 

 

 
Figure 9: UQP2, semi-intrusive acyclic, as a composition of UQP1s. 

 

A B

uncertain 
inputs

<QoI>, 
Var[QoI], 
…
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semi-intrusive acyclic

UQP1 UQP1
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Note a few important issues. First, after applying UQP1 to submodel A, the data to be sent to 

submodel B has now turned into an uncertain output (denoted by the orange line), which is then 

converted into uncertain input for submodel B (in the grey-lined box, resulting in the blue arrow into 

submodel B). Depending on details of submodels A and B, this operation can be far from trivial, e.g. 

capturing correlation between outputs of uncertain outputs of A, that need to be accounted for when 

creating the uncertain input for B. First results in a fusion application in WP4 demonstrate what such 

operation could mean. 

 

Suppose that submodels A and B have 𝑛* and 𝑛+ uncertain input parameters, and that the execution 

time for submodels A and B is 𝑇*  and 𝑇+  respectively. Moreover, suppose that for each uncertain 

parameter we must sample 𝜎 independent samples from the distribution of the uncertain parameters, 

when performing a ‘black box’ QMC UQ. If we would do this for the whole A à B multiscale model, 

this would result in an execution time 

 

 𝑇./01 = 𝜎(34536)(𝑇* + 𝑇+), [1] 

 

basically meaning that the black box UQ requires 𝜎(34536) runs of the multiscale model. If we would 

now apply UQP2, so first do the UQ on A, and then propagate the uncertain output to B and do a UQ 

on B, we find that, assuming that now for B we have 𝑛+ + 𝑛*→+ uncertain parameters (namely also 

the information sent from A to B) 

 

 𝑇./0: = 𝜎34𝑇* + 𝜎36534→6𝑇+,  [2] 

 

where we ignored the time required to convert uncertain output from A to input for B. The speedup 

that can be achieved by UQP2 then becomes  

 

 ;<=>?
;<=>@

= ABC4DC6E(;45;6)
AC4;45AC6DC4→6;6

. [3] 

 

If 𝑛* and 𝑛+  are comparable, and in the limit of 𝑇* ≫ 𝑇+  we find a speedup of 𝜎36 , which can be 

substantial. And vice-versa, if 𝑇* ≪ 𝑇+ the speedup becomes 𝜎34H34→6. Depending on 𝑛* and 𝑛*→+ 

the speedup can again be substantial, but in this limit UQP2 can also result in a slowdown if 𝑛*→+ >

𝑛*. 
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If 𝑇* and 𝑇+ are comparable, say 𝑇* = 𝑇+, we find ;<=>?
;<=>@

= :ABC4DC6E

AC45AC6DC4→6
, and further simplifying by 

assuming that 𝑛* = 𝑛+ = 𝑛 gives ;<=>?
;<=>@

= :AJ

15AC4→6
, again resulting in potentially large speedups. For 

large enough 𝜎 we find  ;<=>?
;<=>@

= 2𝜎KH34→6 . In this limit, UQP2 will result in speedups as long as 

𝑛*→+ ≤ 𝑛. 

 

Referring to Figure 19, the coupling topologies, UQP2 will still be applicable if submodel A or B 

would have multiple fixed or dynamic instances. However, this would require a more extended ‘wiring 

up’ in software. It remains to be seen, in close collaboration with WP3 and WP4, if such applications 

are encountered, and what that would mean for expressing the UQP in software. Also note that 

submodels A and B could, in principle, be quite complex multiscale models by themselves. Therefore, 

if a multiscale model has an acyclic coupling somewhere, it can be decomposed into two large 

components and UQP2 could in principle be applied. 

2.3.4 UPQ3: Semi-Intrusive cyclic 

For cyclic multiscale models one could first explore if constructing a task graph as in Figure 22 and 

then applying UQP2 would be an option. Certainly, for a fixed number of synchronization points this 

is theoretically possible, but even if the number of cycles is dynamic executing the cyclic multiscale 

model as if it were a fully serialized acyclic model would be an option. In its full generality such 

cyclic model would then unfold as in Figure 10. An important additional feature now is that in cyclic 

models, the submodels A and B typically iterate over time (see the SEL, Figure 17) and must be 

considered stateful, meaning that in say iteration i of the cycle, process A[i] would update its state 

based on its state in iteration i-1 and input from B[i-1]. So, in principle, UPQ2 (Figure 9) could be 

applied, but the details of the data sent from A to B, including the states from one iteration to the next, 

that should now become uncertain outputs and uncertain inputs, will dictate to what extend this 

approach is useful. In VECMA we may explore this option for some applications, to understand the 

efficacy of this approach. 

 

 

 
Figure 10: Fully serialised cyclic multiscale model. The dotted green arrows denote that the iterations of A and B 

are statefull, and that data is sent from A[i] to A[i+1] and B[i] and B[i+1]. The blue and orange arrows denote 

again the uncertain inputs and outputs. 

A[0] B[0] A[1] B[2] A[n-1] B[n-1] A[n] B[n]… iterations …
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In order to proceed we need to invoke a few more distinctions and assumptions. The next 

distinguishing feature of a multiscale model is in the interaction regions (see Figure 16). For the 

control structure and how in detail a multiscale simulation is executed, the main feature is if the 

timescales of submodel A and B overlap or are separated. In case the timescales are separated (so, 

interaction regions 1, 3.1 and 3.2), and assuming that submodel B is the slow process, this basically 

means that after every iteration of submodel B, submodel A is started and run to completion (this is 

the example shown in Figure 17). When the timescales overlap (interactions 0 and 2) the SELs of 

submodel A and B are coupled in the inner loop (so, Oi,A to (S,B)B and Oi,B to (S,B)A). These 

considerations lead to a further distinction in UQP3, see Figure 11. Here we follow the naming as 

suggested in the VECMA proposal. However, this naming is part of an ongoing discussion during the 

final months of task 2.2 (UQP development) and follow-up task 2.4 (advanced UQP development). 

 
Figure 11: Further distinction in UQP3 between time scale separation (UQP3-A) and time scale overlap (UQP4) 

 

For now, UQP4 seems to not open up to more advanced algorithms, and most probably the best 

candidate for now seems to be to try to apply the approach of UQP2, as suggested above, so applying 

UQP2 to the serialised workflow as in Figure 10. As written before, we will further explore this, in the 

realm of tasks 2.4 and driven forward by demands from applications in WP4 that would fall in this 

category. 

 

For UQP3-A, so for cyclic multiscale models with time scale separation, we can continue to make 

additional assumptions, based on our experience in handling many multiscale applications that fall into 

this category. Usually, the Quantities of Interest in such multiscale models is derived from the slow 

dynamics. Assuming that submodel B implements the slow dynamics, the prototypical multiscale 

model for UQP3-A is as in Figure 12. 

 

 
Figure 12: Prototypical cyclic multiscale model with time scale separation, where B is the slow process. 
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At the same time, the fast dynamics typically involves microscopic processes with huge degrees of 

freedom (e.g. explicit molecular dynamics simulations). Executing such microscopic model is 

normally already an expensive operation, and when coupling it to a slow process with which it is in 

quasi-equilibrium means that the fast process is executed to completion for every iteration of the slow 

process. This means that most of the execution time of such a multiscale model is spent on the fast 

processes. 

 

In a UQ scenario for such a multiscale model, our working hypothesis is that in order to estimate the 

uncertainties in the QoI, some errors in the fast process simulations can be tolerated. If so, we could 

try to reduce the number of runs of the fast dynamics (subsampling) and estimate the remaining runs 

by interpolation. This is the approach followed in Figure 3. Another option would be to replace the 

fast dynamics altogether by a surrogate, see Figure 4. In the examples reported in section Error! 

Reference source not found. we have demonstrated that our working hypothesis is valid, and that as a 

result the execution time required for multiscale UQ for cyclic time scale separated problems can be 

drastically reduced. 

 

First consider the case of subsampling and interpolation (as in Figure 3). The resulting UQP3-A is 

drawn in Figure 13. Interestingly, UQP3-A means adding an additional box between the fast and the 

slow dynamics, to orchestrate the subsampling, interpolation, and statistical testing of the interpolation, 

and then basically running a UQP1 on the resulting enhanced multiscale model. This additional box 

must be provided in some dedicated way, which depends on how the actual multiscale simulation is 

implemented. However, the basic functionality required for this subsampling box, should be made 

available via the VECMA toolkit. 

 

 
Figure 13: UQP3-A, semi-intrusive cyclic, time scale separated, sampling efficiency, as a UQP1 on a slightly 

changed multiscale model. 

 

We can also consider replacing the fast dynamics altogether by a surrogate. In the proposal this was 

coined UQP3-B (and again, for now we maintain this terminology, before ending task 2.2 we intend to 

UQP3-A
semi-intrusive cyclic, time scale separated, sampling efficiency

UQP1
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revisit this). The resulting UQP3-B is drawn in Figure 14. Again, UQP1 is applied to a slightly 

changed multiscale model, where the fast dynamics is replaced by a surrogate model. Most software 

that is used to construct cyclic multiscale simulations (such as e.g. MUSCLE2) have a plug and play 

feature that would allow such a change. Than the main challenge is to construct the metamodel, based 

on the uncertain input parameters of the fast and the slow dynamics, and based on prior knowledge on 

where and how the slow dynamics would ‘steer’ the fast dynamics through its parameter space. Details 

of this are of course highly application specific, but having some generic software for popular classes 

of metamodeling approaches (e.g. building Gaussian Process based surrogates) in the VECMA toolkit, 

and being able to easily set up the workflow as implicated by UQP3-B is desirable for efficient 

multiscale UQ. 

 

 
Figure 14: UQP3-A, semi-intrusive cyclic, time scale separated, with metamodelling, as a workflow where first 

the metamodel is constructed for the fast dynamics, followed by a UQP1 on a slightly changed multiscale model, 

where the fast dynamics is replaced by the metamodel. 

 

2.3.5 Bringing everything together and towards more advanced UQPs 

The discussions above leading to UQP1, UQP2, UQP3-A,B and UQP4 are in line with those that were 

originally described in the proposal. However, we have now substantiated them, clearly embedded 

them in the MMSF, and have shown how UQP2 – UQP4 could be composed out of UQP1, with 

additional functionality that should be embedded into the execution of the multiscale model while 

performing the multiscale UQ. For UQP2 we have also provided some estimates on performance, 

which need to be tested in practice and extended to the other UQPs. And for UQP3-A and UQP3-B we 

have shown some examples of applications using the ideas behind these UQPs to corroborate the 

working hypothesis that underlies the UQP3-A,B family (QoI on the slow dynamics, most 

computational effort in the fast dynamics, and tolerance  in estimation of uncertainties). 

 

To summarize, the UQPs introduced above have been a combination of what we in the proposal 

coined control structure UQPs and optimization UQPs. The control structure UQPs are based on the 

distinction between acyclic and cyclic multiscale models, and for the latter, in time scale overlap or 

UQP3-B
semi-intrusive cyclic, time scale separated, metamodeling

UQP1Construct metamodel
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time scale separation. For acyclic multiscale models the interaction regions and the relevant coupling 

topologies (single, fixed, or dynamic number of instantiations of the submodels) do not seem to result 

in other multiscale UQ approaches (albeit in much more complex workflows), and UQP2 seems well 

defined (but see the discussion on optimisation UQPs below). For UQP3 and UQP4 more work is 

required (in task 2.2 and 2.4) to further explore the implications of the control structures. 

 

The optimization UQPs that were discussed are in relation to subsampling of expensive fast dynamics 

and replacing a submodel by its surrogate. Another optimization could be to perform an intrusive UQ 

on a submodel, and replace that submodel by the intrusive UQ variant. Table 1 provides an overview 

of all possible UQPs along these two dimensions. The naming conventions are not yet agreed upon, 

the deliverable reflects the current thinking in the consortium. The UQPs in green have been discussed 

above and partly tested in VECMA (WP2, WP3, WP4). Those in orange are under investigation, and 

depending on the needs of the applications, will be further developed. Note that the optimisation 

dimension also allows combinations, e.g. combining subsampling (A) with metamodeling (B) is of 

course an option. If that would lead to further reductions of execution time of the multiscale UQ using 

subsampling or metamodeling alone remains to be seen. 

 
Table 1: Overview of UQPs, along the control structure and optimization dimensions. The UQPs in green 

have been discussed in the main text, those in orange require further analysis and development. The red 

crosses indicate void combinations, and the question marks need further investigation. 

 
 

Finally, in Table 1 we have not made deeper distinctions in terms of the coupling topologies. So, we 

kept the cyclic with fixed or dynamic number of cycles together. Currently we don’t see the need to 

split even further along this dimension. Likewise, for the number of instances of the single scale codes. 

As discussed above, in the acyclic case this can in principle be captured by UQP2. For the cyclic case 

this is a bit subtler. A cyclic time scale separated model with a single domain usually lies in interaction 
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region 3.1 (meaning that also the spatial scales are separated) and that a large number of instantiations 

of the microscale model is required, basically leading to the Heterogeneous Multiscale Model. So, 

UQP-5 already implies multiple instances of the microscale submodel. Moreover, from the ComPat 

project we know that efficiently executing such Heterogeneous Multiscale Model requires a surrogate 

model anyway, to prevent executing too many microscale models [31]. This suggests that the UQP5 

family basically implies UQP5-B, and that the other UQP5 variants would be void. This requires 

deeper analysis. The UQP3 family was constructed with a few assumptions (mainly that the QoI are 

on the slow dynamics). This needs to be further explored and tested against our current applications 

portfolio, and against all other multiscale models that we are aware of. 

2.4 From UQPs to the VECMA toolkit 

In this section we describe how we map the UQPs proposed in WP2 to a working and applicable 

implementation for use by the VECMA project, as well as external users. This description reflects an 

ongoing learning process, which is grounded in fast-track UQ activities performed up to this point and 

will continue as the project progresses. We first summarize the low-level building blocks that we 

identify from the implementation perspective, so-called UQ elements (or UQEs), then describe how 

UQPs as a whole are reflected in the implementation. Lastly, we reflect on several key implementation 

and execution aspects of using the proposed UQPs. 

2.4.1 Decomposing UQPs into elements 

UQPs are algorithmic specifications of UQ that are generic, extensible and widely applicable. The 

algorithmic specification level is well suited for most scientific reflections, where the right conceptual 

granularity is key in retaining both a simple means of discourse, and enough detail to identify key 

differences. From the perspective of toolkit design and implementation, we work with a hierarchy of 

perspectives (e.g., from generic to application-specific) and levels (e.g., from full application to 

component to single lines of code). A fine-grained conceptual granularity is needed here, because fine-

grained concepts lead to simple functional implementations, that are more likely to be reused in other 

places in the toolkit (i.e. help reduce duplicate code). To efficiently implement UQPs, we therefore 

need to break them into smaller, and more generic pieces. Throughout the first year of VECMA, we 

have realized that this is possible, and we refer to these pieces as UQ Elements (or UQEs). Likewise, 

we realized that UQPs can be broken down, and therefore changed the nomenclature from Uncertainty 

Quantification Primitives to Uncertainty Quantification Patterns (allowing us to retain the UQP 

acronym). 

 

Based on our current interpretation of UQPs, and our experiences in implementing UQ algorithms as 

part of our fast-track activities, we have identified a preliminary range of relevant UQEs, which are 

listed below. Please note that these definitions are likely to be revised as we obtain new insights: 
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• Parameter space specification: a definition of the parameter space in which uncertainty resides, 

including a distribution of probabilities that parameters have a specific value. 

• Sampler: a component which, given a parameter space specification and probability 

distributions, generates random samples for a specific application. 

• Encoder: a component that incorporates application-specific information in a generic 

definition of a UQ procedure (also called application mapping), enabling it to be carried out as 

a computation using e.g., a supercomputer. 

• Decoder: a component that extracts generic UQ results from the (application-specific) output 

of a simulation run, enabling generic UQ tools to analyse the data and plan subsequent UQ 

activities. 

• Collation: the process of aggregating the data generated by a range of executions into metrics 

that reflect the ensemble as a whole. 

• Analysis: the process of extracting outcomes from collated data, in accordance with 

predefined specifications such as to allow for human interpretation or further workflow 

guidance. 

• Probability distribution: a definition of the likelihood of a parameter assuming a particular 

value within its range of possible values. 

• Worker: an independent task that serves to perform pre-instructed steps of a UQ procedure. 

 

These elements help design and implementation activities, as many of them are essential to a range of 

UQPs. Consequently, we will be able, in many cases, to reuse existing code components not only 

when applying existing UQPs to new applications, but also when implementing new UQPs altogether. 

2.4.2 Implementing UQPs 

Within VECMA we focus largely on UQ algorithms that either leave a single-scale model 

implementation entirely untouched, or replace the implementation with a surrogate model, which can 

be either a stochastic approximation (trained through previous simulation work), or a cheaper and less 

accurate version of its original counterpart. As a result, a key component of implementing UQPs is to 

establish a generic mechanism for adding UQ around individual models. We provide an overview of 

such a mechanism in Figure 15, basically realizing UQP1: 
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Figure 15: Generic implementation mechanism for performing UQ on a particular (single-scale) model. 

 

In this mechanism we (a) define the parameter space in which we wish to do UQ, including parameter 

probability distributions, (b) draw samples from this space to create a campaign of runs, (c) encode the 

samples to translate them to definitions that can be executed as computations, (d) evaluate/execute the 

model implementation, (e) decode the results to extract the generic UQ output from the model, (f) 

analyse the UQ output to facilitate human interpretation and/or guide subsequent tasks, and (g) Refine 

and repeat steps b-f as needed, based on the results obtained in step f.    

 

UQ, when performed in this way, is inherently a stochastic process both in a single- and multi-scale 

model context. As such, the exact sequence of tasks is not always known in advance, and the rules for 

controlling the flow of activities may rely on complex algorithms. To accommodate this in our 

implementation, we choose to implement UQPs as code-driven generic recipes as opposed to complex 

data structures. Although the exact implementation of these recipes may vary per tool, the use of 

Python code is most prevalent throughout the toolkit. 

2.4.3 Key considerations for implementation and execution 

For researchers to apply UQPs in a meaningful way, it is essential that their implementations are 

generically applicable, easy to use, and can be executed effectively on existing HPC platforms: 

 

Generality: Implemented UQPs will only be of use to the full community if they are indeed 

application-agnostic. In VECMA we seek to preserve generality of UQPs in several ways. First, 

through the introduction of encoders and decoders in our toolkit (i.e., in EasyVVUQ) we isolate much 

of the application-specific information from the UQ logic. Second, we incorporate additional UQP 

functionalities (such as sampling and ensemble execution) at a low, application-agnostic level in our 

toolkit. Third, in our FabSim3 automation toolkit we use a plugin system for application- and domain-
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specific functionalities, with plugins that rely on generic UQEs present elsewhere in the toolkit. In 

doing so we seek to encourage a separation of concerns, modularity, as well as re-use of predefined 

elements.   

Ease of use: We seek to make implemented UQPs easy to use, and thereby promote uptake, as follows: 

First, we provide tutorials and example applications. For instance, the M12 release will feature at least 

three example applications. Second, we provide a range of tests, including automated unit and 

functional tests, peer-testing by developers, and thorough testing by internal and external alpha users 

every three months. Third, we provide active support to help new applications adopt the VECMA 

toolkit, and along with that the UQPs. 

Execution: Within VECMA, many UQPs involve the intelligent sampling, resampling and coupling 

of single-scale models. If done naively, UQ across different models leads to an explosion in number of 

simulation evaluations, and even with advanced optimizations many applications will require 

thousands of jobs or more, while most supercomputer schedulers tend to support only O(10) job 

executions at a given time. To make workflows with such large job counts tractable, we provide two 

mechanisms. First, we are able to quickly (and incrementally) generate very large numbers of job 

definitions using the sampling and encoding routines in EasyVVUQ. Second, we are currently 

incorporating a range of so-called pilot job managers within the VECMA toolkit (for instance, QCG 

Pilot Job Manager (QCG-PJM) and RADICAL Cybertools). These pilot job managers enable users to 

create a single container job on a remote supercomputer, and subsequently schedule 1000s of jobs or 

more within that job container. Due to the complex mechanisms that may be used to control the flow 

of UQ activities, we will require these pilot jobs to be controlled dynamically at runtime for advanced 

applications. Within the VECMA toolkit, we seek to establish this functionality, at scale, for the first 

time to our knowledge. 

 

3 Conclusions and future work 

WP2 is on track, and well underway to finalise task 2.2 as planned. Having established the main UQPs, 

and understanding how to break down the basic building block UQP1 into a number of generic 

building blocks (UQEs) and how to implement those in software, lays the groundwork for WP2. In 

close concertation with WP3 and WP4 the next steps will now be to further explore the UQPs as 

defined above, to test them in practice, to develop performance models and test those, and to look in 

more detail in the more advanced UQPs (UQP2-5). Moving into the next phase of VECMA also 

means that in WP2 we will now also start to investigate formal methods for validation and verification 

of multiscale models. 
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4 Annexes 

4.1 The Multiscale Modelling and Simulation Framework 

The MMSF provides an abstract way to understand the (computational) structure of multiscale models 

and multiscale simulations. Over the years, and in context of a series of EU funded projects, we have 

built strong confidence that the MMSF is an overarching framework that captures the characteristics of 

multiscale computing. Without going in much details here, we will highlight a few notions from the 

MMSF that will guide the definitions and design of UQPs. For full details we refer to [19,20] and 

references therein. 

 
Figure 16: The interaction regions on the scale map, process A resides in region 0, and process B can then reside 

in 5 regions, leading to 5 types of interactions. 0 – scale overlap, Multiphysics; 1 – time scale separation; 2- 

spatial scale separation; 3.1 – classical micro-macro coupling; 3.2 – micro-macro coupling where a fast process 

on a large spatial scale is coupled to a slow process on a small spatial scale. 

 

The first notion is the Scale Separation Map (SSM) and the associated interaction regions between 

two processes placed on the SSM, see Figure 16. Another relevant notion is the relation between the 

computational domains of two processes. These can either overlap (single domain) or be multi domain, 

where both computational domains exchange information through a boundary or small overlap region. 

Note that single-domain vs multi-domain is a property that is additional to the notion of interaction 

regions, that is for all interaction regions in Figure 16 one can find examples of single-domain or 

multi-domain multiscale applications. This has immediate consequences on how scale bridging 

information is exchanged between single scale models, and this notion will also have impact on UQPs. 

The notion of the interaction regions in combination with the relation between the computational 

domains leads to a powerful classification of multiscale systems. 

 

Next we define a generic Submodel Execution Loop (SEL) that abstracts the computations in all single 

scale models as a while loop over three abstract operators (initialisation, a ‘solver’, and a boundary 

condition operator) and two operators that can observe the state of a single scale model (one inside the 
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while loop, and a second upon termination of a single scale model). We find that in coupling together 

single scale models in a multiscale model, only four coupling templates, defined as directed 

communication from an observation operator of one single scale model to a computing operator of 

another single scale model. Figure 17 shows the SEL of two processes, and an example of a coupling 

template in case the two processes would be time scale separated (so interaction region 1, 3.1, or 3.2). 

This coupling template is the call-release template. 

 

 
Figure 17: Example of two processes, interaction region 1, 3.1, or 3.2, showing the SEL and the coupling 

templates (in this case the call – release pair). 

 

Next, we introduce the notion of multiscale computing, and the two main multiscale computing 

paradigms, acyclic (or loosely coupled, or workflows) and cyclic (or tightly coupled), see Figure 18. 

In acyclic multiscale computing one single scale model provides input to another, and single scale 

models are executed once. This can be seen as a traditional workflow, with the difference that the scale 

bridging, the arrow between the single scale models could entail a quite complicated hand-shake. In 

general, the fact that these models operate on different scales means that the very nature of the models 

may be radically different – for example, one might be particulate/stochastic, the other continuum 

based and deterministic. Getting a “handshake” between both models is frequently complicated and 

requires multiple steps and computations. In cyclic multiscale computing, single scale models call 

each other in an iterative loop, and therefore single scale models can execute many times. For such 

cyclic computing dedicated coupling libraries are required.  

 

 
Figure 18: Acyclic (left) and cyclic (right) multiscale applications 

 

Finally we need to specify how many instances of single scale models are executed, if this number is 

fixed or dynamic, and in case of cyclic applications, how many synchronization points are required (so 
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how many cycles are passed in the cyclic application) and if the number of synchronization points are 

static or dynamic. All possible combinations lead to 9 different coupling topologies, see Figure 19.  

 

 
Figure 19: Coupling topologies 

 

The Multiscale Modelling Language (MML) translates all these concepts into a graphical (gMML) 

and machine readable (xMML) specification of the multiscale model that contains in principle 

sufficient information for execution of the multiscale model in any type of computing environment. In 

the earlier MAPPER and COMPAT projects we have demonstrated all these capabilities in the context 

of Distributed Multiscale Computing (DMC) and High Performance Multiscale Computing (HPMC).  

 

Another relevant feature of the MMSF that may be of relevance to UQPs is the notion of task graphs 

for multiscale computing. Borgdorff et al. already introduced task graphs when specifying the 

foundations of the MMSF [19]. As shown in Figure 20, a task graph can be derived from an xMML 

specification of a multiscale application, and the task graph in turn can be used as input for scheduling 

software. We have demonstrated that task graphs can automatically be derived from xMML [19] and 

demonstrated the use of task graphs for one specific application [27]. 
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Figure 20: Several stages of description of a multiscale model in the MMSF, starting from the Scale Separation 

Map, details of the Coupling Topology are added, followed by a full specification in terms of xMML, from 

which a Task Graph is derived that can then be used as input to scheduling software. 

 

Task graphs were introduced in the MMSF for deadlock 

detection, validity checking, and for estimating 

computational costs and scheduling. An example of a task 

graph for the In-Stent Restenosis application (see deliverable 

D4.1) is shown in Figure 22. 

 

A task graph is a directed acyclic graph of tasks (the nodes) 

and their dependencies or data flows (the edges). It can be 

used for scheduling on parallel and/or distributed computing 

resources [32] and in the context of VECMA, to apply UQPs 

on the task graph. It can also be seen as a serialized or 

unfolded graph of the MML description, which may be 

cyclic. Task graphs can get extremely large, growing 

exponentially in the number of temporally scale separated 

submodels, exacerbated by submodels that have a lot of 

iterations. A methods to reduce the number of nodes is 

collapsing redundant nodes, which is also demonstrated in 

[19]. In fact, Figure 22 shows such reduced graph. 

 

4.2 Examples of applying semi-intrusive multiscale UQ algorithms 

4.2.1 1D reaction-diffusion system 

The first case study is a 1D reaction-diffusion model with slow diffusion and fast reaction [10]. The 

response of this system consists of two two-dimensional fields, which we name u and v. The UQ result 

obtained with the MC of the final time step is presented in Figure 22. The results of the mean value for 

SSM  Coupling topology   (x)MML   Task graph    Scheduling 

 
Figure 21: example of a task graph, 

showing the initialisation and first two 

cycles in the ISR3D model. Note that 

in the ISR application typically a few 

thousands of full cycles are performed. 
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u and v are approximately reversed. At the same time, the standard deviations of u and v have a similar 

pattern. However, since the maximum value in space of u is much greater than v, the relative 

uncertainty of v represented by the coefficient of variation reaches 100% at some locations, where this 

value for u is about 36%. The execution time for the tested multiscale UQ algorithms is presented in 

Figure 23. 

 
Figure 22: The expected value and the standard deviation of the two systems estimated by the Monte Carlo 

method 

 

 
Figure 23: Comparison of UP methods in terms of execution time. Here and later, Nmeta is the number of samples 

used to build the data-driven metamodel, NPC is the truncated power in the Polynomial Chaos method, and "r.s" 

denotes the reference solution. The numbers above the bars are the mean relative errors in the results of the 

standard deviation obtained by the methods versus the MC results. The execution time broken down into time 

spent in respectively the macroscale model, the microscale model, and the interpolation test (only for the SIMC). 
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4.2.2 Gray-Scott model 

The second example is a two-dimensional Gray-Scott model as presented in [10]. The UQ result 

obtained with the MC of the final time step is presented in Figure 24. The results of the mean value are 

still quite close to the patterns from Figure 24, and this results for u and v are approximately reversed. 

At the same time, the standard deviations of u and v have a similar pattern. However, since the 

maximum value in space of u is much greater than v, the relative uncertainty of v represented by the 

coefficient of variation reaches 100% at some locations, where this value for u is about 36%.   

 

 
Figure 24: Uncertainty estimation result obtained by the MC method: the mean value (left column), the standard 

deviation (central column) and the coefficient of variation (right column) of the concentration u (upper row) and 

v (bottom row). 

 

A comparison of the computational time and the error in the standard deviation by several semi-

intrusive multiscale UQ methods is presented in Figure 25, where the MC result is used as a reference 

solution. The SIMC and metamodeling with GP result in a significant drop in the execution time while 

the coupled intrusive and non-intrusive PC and the Galerkin methods are computationally more 

expensive than the MC method. Moreover, the error in the results of the last two methods exceeds 

60%. The high value of the error is due to the nonlinear nature of the Gray-Scott model, which cannot 

be approximated by a series of low order polynomials. The results obtained by the SIMC and the 

metamodeling with the GP are much closer to the MC results. In this example, the interpolation test in 

the SIMC is not passed, and, therefore, 50 samples are used to compute uncertainty with the MC, 

which produces a  7.7% error instead of 11% when the result of the SIMC is accepted.  
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Figure 25: Comparison of the performance of the UQ methods applied to the Gray-Scott model, where "r.s" 

denotes the reference solution, and the percentage indications above the columns are the mean relative error in 

the estimates of the standard deviation. 

4.2.3 ISR2D 

The next application is a 2-dimensional multiscale model of in-stent restenosis (ISR2D) [22]. Figure 

26a shows the estimated mean value obtained by four UQ methods that were tested: the quasi-Monte 

Carlo (QMC) and the semi-intrusive multiscale methods, where two metamodels are obtained with a 

data-driven method (DD Meta I and DD Meta II) and one by simplified physics (Phy Meta). The 95% 

bootstrap confidence interval is plotted as a red shaded area around the results from the QMC method, 

as presented in [23]. All three metamodeling results result in a statistically significant underestimation 

of the mean value (two-valued t-test, p < 0.01).  

 

ISR2D is subject to both epistemic and aleatory uncertainty. Some model inputs are uncertain due lack 

of knowledge, and the model is also stochastic itself because it simulates the natural variability of the 

process of interest. We estimated the total standard deviation, as well as an upper bound of the partial 

standard deviation due to aleatory model uncertainty. As Figure 26b shows, the metamodeling 

estimates are high, but for the data-driven metamodels still within the 95% confidence interval of the 

QMC result. 

 

The coefficients of variation (CoV) shown in Figure 26c are equal to the ratio between the (partial) 

standard deviation and the mean value, and are a measure of the relative model output uncertainties. 

Here we observe that the underestimation of the mean value leads to the overestimation of the CoV.  
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Figure 26d-g show the distribution of the cross-sectional areas at the final simulation time step. The 

dashed vertical line indicates a restenosis threshold, defined as 50% occlusion of the original lumen 

area. Thus, about 9.7% out of all samples obtained by QMC result in restenosis. The data-driven 

metamodel results are about half this value. The results with the physical metamodel shows result of 

only 1.8%, and a shift of the probability density function to the left is visible. 

 

 
Figure 26: Analysis of the uncertainty measures by the four UQ methods: the quasi-Monte Carlo (QMC) method, 

metamodelling methods by data-driven (DD meta I and II) approach and by simplified physics (phys meta). 
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Figure 27 shows the time needed for a single model run using the four UQ methods: the quasi-Monte 

Carlo (QMC), the two different data-driven metamodels (DD Meta I and II), and the metamodeling by 

the simplified physical surrogate. The light colors indicate the total execution time of the whole 

multiscale model, and the dark colors indicate the portion of the time taken by the micro model or 

surrogate. For the metamodeling methods, the indicated time includes the construction of the 

metamodels.  

 

DD Meta I reduces total runtime by almost half. DD Meta II, which uses less data, is faster still, at five 

times the speed of the original. The physical metamodel is fastest, but only by a small margin over DD 

Meta II. 

 

 
Figure 27: Comparison of the computational time per one model run with different UQ methods. 
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