
 VECMA - 800925

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 800925.

D2.1: Report on multiscale UQ algorithms
based on non-intrusive MC and semi-intrusive

MC and mapping thereof in UQPs

Due Date 14 June 2019
Delivery 14 June 2019
Submission of updated
version

N/A

Lead Partner UvA
Dissemination Level Public
Status Final
Approved Yes
Version V2.0

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 2 of 32

DOCUMENT INFO

Date and
version number

Author Comments

17.04.2019 v0.1 A. Hoekstra Skeleton, as sent to writing team
18.04.2019 v0.2 A. Nikishova Addition of main text
20.04.2019 v0.2 D. Ye Addition of main text
25.04.2019 v0.2 W. Edeling and

D. Commelin
Addition of main text

28.04.2019 v0.2 D. Wright and R.
Richardson

Review and providing input and text to next authors

30.04.2019 v0.2 D. Groen and A.
Hoekstra

Addition of main text

10.05.2019 A. Hoekstra Major edits with input from all other authors
22.05.2019 A. Hoekstra Final edits
03.06.2019 A. Hoekstra Update after internal review

CONTRIBUTORS

• A. Hoekstra (UvA) – Editor, author
• A. Nikishova (UvA) – Author
• Dongwei Ye (UvA) – Author
• Wouter Edeling (CWI) – Author
• Daan Crommelin (CWI) – Author
• D. Groen (UBRU)
• D. Wright (UCL)
• R. Richardson (UCL)

Disclaimer

This document’s contents are not intended to replace consultation of any applicable legal sources or

the necessary advice of a legal expert, where appropriate. All information in this document is

provided “as is” and no guarantee or warranty is given that the information is fit for any particular

purpose. The user, therefore, uses the information at its sole risk and liability. For the avoidance of

all doubts, the European Commission has no liability in respect of this document, which is merely

representing the authors’ view.

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 3 of 32

TABLE OF CONTENTS

1 Executive summary .. 4

2 Algorithms and Uncertainty Quantification ... 4

2.1 Introduction .. 4

2.2 Algorithms for Multiscale Uncertainty Quantification ... 5

2.2.1 Introduction ... 5

2.2.2 Non-intrusive methods .. 6

2.2.3 Semi-intrusive Multiscale methods ... 7

2.3 Uncertainty Quantification Patterns .. 9

2.3.1 From MMSF to UQPs ... 9

2.3.2 Toward UQPs .. 10

2.3.3 UPQ2: Semi-Intrusive acyclic ... 12

2.3.4 UPQ3: Semi-Intrusive cyclic ... 14

2.3.5 Bringing everything together and towards more advanced UQPs 17

2.4 From UQPs to the VECMA toolkit ... 19

2.4.1 Decomposing UQPs into elements .. 19

2.4.2 Implementing UQPs .. 20

2.4.3 Key considerations for implementation and execution ... 21

3 Conclusions and future work ... 22

4 Annexes .. 23

4.1 The Multiscale Modelling and Simulation Framework .. 23

4.2 Examples of applying semi-intrusive multiscale UQ algorithms ... 26

4.2.1 1D reaction-diffusion system ... 26

4.2.2 Gray-Scott model ... 28

4.2.3 ISR2D .. 29

5 References ... 31

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 4 of 32

1 Executive summary

During year 1 of the project WP2 has focussed on further developing the concept of Uncertainty

Quantification Patterns (UQPs). Firstly, a family of semi-intrusive multiscale UQ algorithms is

proposed, and partly tested on a set of cyclic multiscale models, demonstrating that indeed such

semi-intrusive methods are capable of estimating the output uncertainties in a reliable way, while at

the same time reducing the required execution time of the overall multiscale UQ.

Based on this experience, and guided by the Multiscale Modelling and Simulation Framework, a

family of UQPs is designed. The main result is a distinction in control structure, leading to five

different variants. All these variants can then be further refined using optimisation strategies.

An interesting and important result is that all variants of UQPs build upon the most basic ‘black box’

UQP1. This UQP has been implemented in the VECMA toolkit in WP3, relying on generic UQ Elements

(UQEs) that can be realised in software. The design considerations for the software developments,

based on the UQPs and the concept of UQEs, are also reported in this deliverable.

WP2 is on track, next steps will be to further explore and develop the UQPs and to realise multiscale

V&V.

2 Algorithms and Uncertainty Quantification

2.1 Introduction

The objectives of Workpackage 2, Algorithms & Formalisms, is to develop algorithms for Multiscale

Uncertainty Quantification (UQ), to generalize these algorithms to Uncertainty Quantification Patterns

(UQPs), to scale and optimize them for existing petascale and emerging exascale architectures, and to

develop methods for verification and validation of multiscale simulations and capture these into

Verification and Validation primitives (VVPs).

Task 2.1 (Multiscale UQ algorithms based on non-intrusive MC and semi-intrusive MC) and task 2.2

(UQP development based on task 2.1) started as planned, and task 2.1 was finalised as planned in M12

of the project. The achievements of these tasks are presented in sections 2.2 - 2.4.

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 5 of 32

2.2 Algorithms for Multiscale Uncertainty Quantification

2.2.1 Introduction

Computer modelling is widely used in science and engineering to study systems of interest and to

predict their behaviour. These systems are usually multiscale in nature, as their accuracy and reliability

depend on the correct representation of processes taking place on several length and time scales [1–4].

Moreover, these multiscale systems can be stochastic, since there are always some unresolved scales,

whose effects are not taken into account due to lack of knowledge or limitations of computational

power [2,5]. Additionally, measurements of model parameters, model validation, or initial and

boundary conditions rarely can be achieved with perfect accuracy [6]. Therefore, the model results

inevitably contain uncertainties, and one should estimate their magnitudes by applying a forward

uncertainty quantification (UQ) method.

Usually a distinction is made between intrusive UQ methods, where one substitutes the original model

with its stochastic representation, and non-intrusive methods, where the original model is used as a

black-box [7,8]. Intrusive methods are efficient and relatively easy to apply to linear models, e.g. [9].

This, however, represents only a relatively small class of models. They can be applied to non-linear

models as well, but the solution of the resulting equations may become very demanding. Non-intrusive

methods can be applied to any type of non-linear model. However, if a single model run requires large

execution times, these UQ methods may be ineffective, or even computationally intractable.

We introduce a family of semi-intrusive UQ algorithms for multiscale models, see also [10]. These

methods are called semi-intrusive, since they are intrusive only on the level of the multiscale model,

that is, in the way the single scale components are coupled together. The single scale components

themselves however are treated as black-boxes, see Figure 1.

Figure 1: Intrusiveness of UQ methods.

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 6 of 32

In the semi-intrusive metamodeling approach a surrogate model substitutes the most expensive single

scale model. The metamodel can be constructed by applying, for example, a data-driven approach, like

Gaussian process regression [11–14], or using a spectral approach, for instance, based on polynomial

chaos [15–17]. A comparison of polynomial chaos and Gaussian process surrogates is presented in

[18]. Since only one component of the multiscale model is approximated by the surrogate, the

resulting error in the model output can be small enough to still be able to obtain reliable uncertainty

estimates. However, it is expected that this strongly depends on the sensitivity of the output of the

multiscale model on that of the single scale component and the method used to build a surrogate of

that single scale component.

In the semi-intrusive Monte Carlo (SIMC) method the number of samples for the computationally

intensive part of the multiscale model (usually microscale dynamics) is reduced. This leads to a

decrease in the computational time for the multiscale UQ. A cross validation, which is part of the

method, controls the level of sub-sampling and hence the accuracy of the estimates of uncertainty.

Both the SIMC and metamodeling methods are based on an approximation of the original model

output. The important difference is that in the SIMC we construct a local data-driven surrogate at each

call of the micro model. This allows to estimate the effect of the approximation on the uncertainty

estimates, and adjust the sample size needed. Moreover, in the case of a deterministic multiscale

model, these local surrogate models have much lower input's dimensionality in comparison to global

surrogates as used in the metamodeling methods, which equal to the dimensionality of uncertain inputs,

since at each micro model run a single output can be obtained with a particular value of these

uncertain inputs.

Before describing in more detail the semi-intrusive methods, a short account of non-intrusive methods

(as implemented in WP3) is provided in section 2.2.2.

2.2.2 Non-intrusive methods

Non-intrusive uncertainty propagation methods consider the entire (multiscale) system as one black

box, see Figure 2. The main advantage is that the (legacy) simulation code is left completely

untouched, hence the name ‘non-intrusive’. This allows users to quickly add a UQ component to their

existing simulation framework.

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 7 of 32

Figure 2: Schematic of non-intrusive uncertainty propagation through a multiscale system of coupled single-

scale solvers, mapping input distributions to a distribution of any output Quantity of Interest (QoI). The

propagation technique is agnostic with respect to the structure of the multiscale system, and treats it as a black

box.

To facilitate this, several non-intrusive methods are considered in VECMA, specifically the Monte

Carlo, Polynomial Chaos and the Stochastic Collocation methods [7]. All these methods follow a

similar pattern, namely:

1. Specify the input distributions and draw samples (create a so-called design-of-experiment).

2. Run the ensemble.

3. Perform post-processing analysis.

This common structure is exploited by creating generic UQ Elements for each step. For instance, the

core functionality required by EasyVVUQ, as developed and implemented in Workpackage 3, of step

1 (sampling), is contained in a `BaseSamplingElement`. The sampler of any given method, e.g.

Stochastic Collocation, inherits all base functionality and only adds what is specific to that method.

This setup makes it easy for an ‘expert user’ to quickly add other propagation methods.

2.2.3 Semi-intrusive Multiscale methods

The semi-intrusive methods for multiscale UQ are a family of algorithms, which employ the structure

of the multiscale models in order to perform an efficient UQ, that is, estimating the uncertainties with

comparable quality as the black box MC method, but with a substantially reduced execution time.

According to the Multiscale Modelling and Simulation Framework [19–21], instead of considering the

whole multiscale model as a black-box, the model can be seen as a collection of coupled single scale

black-box systems. Thus, the semi-intrusiveness of the methods boils down to a limited inspection of

the multiscale model, which is only up to the level of single scale components and their coupling.

Below the main ideas behind the semi-intrusive UQ methods is described. First results on applying

these methods on test cases and actual applications from the VECMA application portfolio are

provided.

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 8 of 32

2.2.3.1 Semi-intrusive Monte Carlo

The semi-intrusive Monte Carlo (SIMC) is a Monte Carlo method with a reduced number of samples

of the expensive component of the multiscale model, see Figure 3. The remaining samples are

obtained by interpolation. Usually the interpolation method produces results which are not exact to the

micro model response. Therefore, a statistical cross-validation is applied to test whether the

interpolation does not lead to a large error in the estimates of uncertainty: the error is compared to the

confidence interval of the 𝑁" MC estimate, and then, our algorithm accepts the SIMC results when the

error is smaller than the confidence interval and the MC results, otherwise. All details can be found in

[10].

Figure 3 Semi-intrusive Monte Carlo method with a smaller number of samples of the expensive microscale

model

2.2.3.2 Metamodeling of a single scale model

Surrogate modelling is a common approach to perform an efficient UQ for computationally intensive

systems at a reduced amount of time [16,18]. The idea of these methods is to substitute the original

system by its surrogate, which produces a similar output, but their computational time is lower. In the

semi-intrusive multiscale metamodeling method, these techniques are applied to a single scale

component, which takes the largest portion of the computational time [22]. In this way, the error

introduced by the approximation is expected to be small when estimating the uncertainties of the

multiscale model.

Figure 4 shows an example where the micro model is substituted by a surrogate. The rest of the

multiscale model has the original form. However, since the micro model produces an approximate

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 9 of 32

result, the output of the macro model is not the same as the original model. In this method, the error

will always depend on the details of the model. It depends on the properties of the micro model, for

example, smoothness, which determines how difficult it will be to approximate the original single

scale model. Additionally, the error in the estimates of uncertainty also depends on how sensitive the

result of the macro model is to the output of the micro model which is replaced by a surrogate. If, for

instance, this sensitivity is low, it is reasonable to expect that the error introduced by the

approximation is small. Of course, the error also depends on the method with which the surrogate is

build.

Figure 4: Semi-intrusive multiscale metamodeling uncertainty quantification

2.3 Uncertainty Quantification Patterns

2.3.1 From MMSF to UQPs

With VECMA, we will address the two main aspects of UQ: uncertainty propagation, and sensitivity

analysis (SA). The former deals with how uncertainties in model inputs and parameters propagate to

model output uncertainties, i.e. it is about quantifying output uncertainty caused by input uncertainty.

SA tackles the question of which input uncertainties contribute most to the overall model output

uncertainty, in the (common) situation of multiple uncertain inputs. The two are closely related, in

particular, the high computational cost of performing uncertainty propagation with many inputs can be

reduced by focusing on the inputs found to be most important by SA. Uncertainty Quantification

Primitives (UQPs) are designed to support both UQ and SA in multiscale applications, and which are

scalable to the exascale. They provide the basic building blocks, to create tailored UQ for multiscale

models. In terms of implementation, we anticipate the UQPs to be provided as generic templates,

which can then be customized and aggregated to create a dedicated UQ procedure for multiscale

applications.

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 10 of 32

As discussed in section 2.2 it is possible to exploit the structure of a multiscale model to reduce the

computational requirements of performing a multiscale UQ, the so-calling semi-intrusive UQ, while

still being able to obtain good estimates of the uncertainties. An important assumption in VECMA is

that computational requirement of a single multiscale simulation can be so high, that even on Tier0

machines performing a non-intrusive UQ on the multiscale model would be prohibitive, necessitating

the need for algorithmic improvements. The Multiscale Modelling and Simulation Framework (MMSF)

has been developed in earlier EU funded projects, and its main features are summarized in appendix

4.1.

2.3.2 Toward UQPs

Central to VECMA are multiscale models, consisting of several single-scale models and scale bridges

coupled together. We will exploit this structure to boost the efficiency of UQ for multiscale models.

The starting point is the availability of non-intrusive methods such as (quasi-)Monte Carlo (MC/qMC),

Stochastic Collocation (SC), and Non-Intrusive Spectral Projection (NISP). For SA, suitable

approaches are e.g. Sobol's method and Saltelli's very efficient algorithm to approximate the first order

Sobol sensitivity indices, posterior density approximations and MCMC-based estimates. A first set of

UQPs consists of applying these methods to the multiscale model as a whole. We distinguish between

UQPs employing basic MC and those using more advanced methods such as qMC, SC and NISP. To

increase efficiency, a further set of UQPs that employ existing non-intrusive methods at the level of

single-scale models (or scale bridges). These UQPs combine single-scale computations in accordance

with the multiscale structure to obtain UQ (or SA) results for the multiscale model. We refer to such

UQPs as ‘semi-intrusive’.

The MMSF allows a characterisation of multiscale models and multiscale computing along several

dimensions

• Interaction regions, i.e. scale overlap or scale separation, both temporal and spatial (see Figure

16), leading to 5 different options;

• Single domain versus multi-domain, leading two 2 options;

• Multiscale computing, acyclic versus cyclic (see Figure 18) and the coupling topologies (one,

versus a fixed or dynamic number of instantiations and one, versus a fixed or dynamic number

of synchronisation points, see Figure 19) leading to 9 options.

In principle this would lead to 5 × 2 × 9 = 90 different types of multiscale simulations (when

coupling only two single scale models together). This is relevant for details of the multiscale

modelling, and for multiscale computing, but in designing UQPs we need not consider all these

permutations.

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 11 of 32

As the main goal of the UQPs is to try to exploit the structure of the multiscale model to reduce the

computational cost of a multiscale UQ, it seems logical to first consider the coupling topologies to

define UQPs, and then invoke where needed the notion of interaction regions, and finally, of the

computational domain. Consider a prototypical multiscale model consisting of two submodels, A and

B, coupled together in the most general sense, see Figure 5. Both A and B take uncertain inputs (initial

conditions, boundary conditions, parameters, the blue incoming arrows) and both produce Quantities

of Interest (QoI) with uncertainties (the orange outgoing arrows).

Figure 5: prototypical multiscale model.

The simplest UQP, called UQP1, is to not exploit the structure at all, and consider the multiscale

model as a black box that has inputs and produces outputs, see Figure 6. In UQP1 the UQ and SA is

performed by using non-intrusive methods on the application as a whole, and quantifying the

uncertainty relative to a Quantity of Interest (QoI) that resides in the final application output. By

definition this approach cannot identify the contribution to the UQ from individual submodels of a

multiscale application. SA will only identify contributions of inputs and parameters that are provided

as external input to the overall multiscale application. The current VECMA toolkit provides all

required functionality to implement UQP1.

Figure 6: The non-intrusive UQP1.

The first main distinction that can then be made is acyclic versus cyclic multiscale models, leading to

three main distinct classes of UQPs, see Figure 7. We call these control structure UQPs, where UQP2

relates to acyclic multiscale models and UQP3 to cyclic multiscale models. Both UQPs will

implement semi-intrusive UQ approaches, meaning that the multi scale model is now opened up to

A B

uncertain
inputs

<QoI>,
Var[QoI],
…

UQP1
non-intrusive

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 12 of 32

realise more efficient multiscale UQ algorithms, but the single scale models are still treated as black

boxes.

Figure 7: Three main classes of UQPs.

2.3.3 UPQ2: Semi-Intrusive acyclic

In case of acyclic structure, uncertainty propagates in one direction through the multiscale model.

Output uncertainty of one single component creates input uncertainty of another component. UQP2

performs non-intrusive UQ and SA on consecutive single components. It enables investigation into

how uncertainty propagates and becomes amplified within each component of the model.

The prototypical acyclic multiscale model is shown in Figure 8, where the main difference with Figure

5 is that now submodel A feeds into submodel B, but not vice versa. UQP2 can be realised as a serial

application of UQP1, first to submodel A and then to submodel B, see Figure 9.

Figure 8: Prototypical acyclic multiscale model.

Figure 9: UQP2, semi-intrusive acyclic, as a composition of UQP1s.

A B

uncertain
inputs

<QoI>,
Var[QoI],
…

UQP2
semi-intrusive acyclic

UQP1 UQP1

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 13 of 32

Note a few important issues. First, after applying UQP1 to submodel A, the data to be sent to

submodel B has now turned into an uncertain output (denoted by the orange line), which is then

converted into uncertain input for submodel B (in the grey-lined box, resulting in the blue arrow into

submodel B). Depending on details of submodels A and B, this operation can be far from trivial, e.g.

capturing correlation between outputs of uncertain outputs of A, that need to be accounted for when

creating the uncertain input for B. First results in a fusion application in WP4 demonstrate what such

operation could mean.

Suppose that submodels A and B have 𝑛* and 𝑛+ uncertain input parameters, and that the execution

time for submodels A and B is 𝑇* and 𝑇+ respectively. Moreover, suppose that for each uncertain

parameter we must sample 𝜎 independent samples from the distribution of the uncertain parameters,

when performing a ‘black box’ QMC UQ. If we would do this for the whole A à B multiscale model,

this would result in an execution time

 𝑇./01 = 𝜎(34536)(𝑇* + 𝑇+), [1]

basically meaning that the black box UQ requires 𝜎(34536) runs of the multiscale model. If we would

now apply UQP2, so first do the UQ on A, and then propagate the uncertain output to B and do a UQ

on B, we find that, assuming that now for B we have 𝑛+ + 𝑛*→+ uncertain parameters (namely also

the information sent from A to B)

 𝑇./0: = 𝜎34𝑇* + 𝜎36534→6𝑇+, [2]

where we ignored the time required to convert uncertain output from A to input for B. The speedup

that can be achieved by UQP2 then becomes

 ;<=>?
;<=>@

= ABC4DC6E(;45;6)
AC4;45AC6DC4→6;6

. [3]

If 𝑛* and 𝑛+ are comparable, and in the limit of 𝑇* ≫ 𝑇+ we find a speedup of 𝜎36 , which can be

substantial. And vice-versa, if 𝑇* ≪ 𝑇+ the speedup becomes 𝜎34H34→6. Depending on 𝑛* and 𝑛*→+

the speedup can again be substantial, but in this limit UQP2 can also result in a slowdown if 𝑛*→+ >

𝑛*.

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 14 of 32

If 𝑇* and 𝑇+ are comparable, say 𝑇* = 𝑇+, we find ;<=>?
;<=>@

= :ABC4DC6E

AC45AC6DC4→6
, and further simplifying by

assuming that 𝑛* = 𝑛+ = 𝑛 gives ;<=>?
;<=>@

= :AJ

15AC4→6
, again resulting in potentially large speedups. For

large enough 𝜎 we find ;<=>?
;<=>@

= 2𝜎KH34→6 . In this limit, UQP2 will result in speedups as long as

𝑛*→+ ≤ 𝑛.

Referring to Figure 19, the coupling topologies, UQP2 will still be applicable if submodel A or B

would have multiple fixed or dynamic instances. However, this would require a more extended ‘wiring

up’ in software. It remains to be seen, in close collaboration with WP3 and WP4, if such applications

are encountered, and what that would mean for expressing the UQP in software. Also note that

submodels A and B could, in principle, be quite complex multiscale models by themselves. Therefore,

if a multiscale model has an acyclic coupling somewhere, it can be decomposed into two large

components and UQP2 could in principle be applied.

2.3.4 UPQ3: Semi-Intrusive cyclic

For cyclic multiscale models one could first explore if constructing a task graph as in Figure 22 and

then applying UQP2 would be an option. Certainly, for a fixed number of synchronization points this

is theoretically possible, but even if the number of cycles is dynamic executing the cyclic multiscale

model as if it were a fully serialized acyclic model would be an option. In its full generality such

cyclic model would then unfold as in Figure 10. An important additional feature now is that in cyclic

models, the submodels A and B typically iterate over time (see the SEL, Figure 17) and must be

considered stateful, meaning that in say iteration i of the cycle, process A[i] would update its state

based on its state in iteration i-1 and input from B[i-1]. So, in principle, UPQ2 (Figure 9) could be

applied, but the details of the data sent from A to B, including the states from one iteration to the next,

that should now become uncertain outputs and uncertain inputs, will dictate to what extend this

approach is useful. In VECMA we may explore this option for some applications, to understand the

efficacy of this approach.

Figure 10: Fully serialised cyclic multiscale model. The dotted green arrows denote that the iterations of A and B

are statefull, and that data is sent from A[i] to A[i+1] and B[i] and B[i+1]. The blue and orange arrows denote

again the uncertain inputs and outputs.

A[0] B[0] A[1] B[2] A[n-1] B[n-1] A[n] B[n]… iterations …

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 15 of 32

In order to proceed we need to invoke a few more distinctions and assumptions. The next

distinguishing feature of a multiscale model is in the interaction regions (see Figure 16). For the

control structure and how in detail a multiscale simulation is executed, the main feature is if the

timescales of submodel A and B overlap or are separated. In case the timescales are separated (so,

interaction regions 1, 3.1 and 3.2), and assuming that submodel B is the slow process, this basically

means that after every iteration of submodel B, submodel A is started and run to completion (this is

the example shown in Figure 17). When the timescales overlap (interactions 0 and 2) the SELs of

submodel A and B are coupled in the inner loop (so, Oi,A to (S,B)B and Oi,B to (S,B)A). These

considerations lead to a further distinction in UQP3, see Figure 11. Here we follow the naming as

suggested in the VECMA proposal. However, this naming is part of an ongoing discussion during the

final months of task 2.2 (UQP development) and follow-up task 2.4 (advanced UQP development).

Figure 11: Further distinction in UQP3 between time scale separation (UQP3-A) and time scale overlap (UQP4)

For now, UQP4 seems to not open up to more advanced algorithms, and most probably the best

candidate for now seems to be to try to apply the approach of UQP2, as suggested above, so applying

UQP2 to the serialised workflow as in Figure 10. As written before, we will further explore this, in the

realm of tasks 2.4 and driven forward by demands from applications in WP4 that would fall in this

category.

For UQP3-A, so for cyclic multiscale models with time scale separation, we can continue to make

additional assumptions, based on our experience in handling many multiscale applications that fall into

this category. Usually, the Quantities of Interest in such multiscale models is derived from the slow

dynamics. Assuming that submodel B implements the slow dynamics, the prototypical multiscale

model for UQP3-A is as in Figure 12.

Figure 12: Prototypical cyclic multiscale model with time scale separation, where B is the slow process.

A B

uncertain
inputs

<QoI>,
Var[QoI],
…

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 16 of 32

At the same time, the fast dynamics typically involves microscopic processes with huge degrees of

freedom (e.g. explicit molecular dynamics simulations). Executing such microscopic model is

normally already an expensive operation, and when coupling it to a slow process with which it is in

quasi-equilibrium means that the fast process is executed to completion for every iteration of the slow

process. This means that most of the execution time of such a multiscale model is spent on the fast

processes.

In a UQ scenario for such a multiscale model, our working hypothesis is that in order to estimate the

uncertainties in the QoI, some errors in the fast process simulations can be tolerated. If so, we could

try to reduce the number of runs of the fast dynamics (subsampling) and estimate the remaining runs

by interpolation. This is the approach followed in Figure 3. Another option would be to replace the

fast dynamics altogether by a surrogate, see Figure 4. In the examples reported in section Error!

Reference source not found. we have demonstrated that our working hypothesis is valid, and that as a

result the execution time required for multiscale UQ for cyclic time scale separated problems can be

drastically reduced.

First consider the case of subsampling and interpolation (as in Figure 3). The resulting UQP3-A is

drawn in Figure 13. Interestingly, UQP3-A means adding an additional box between the fast and the

slow dynamics, to orchestrate the subsampling, interpolation, and statistical testing of the interpolation,

and then basically running a UQP1 on the resulting enhanced multiscale model. This additional box

must be provided in some dedicated way, which depends on how the actual multiscale simulation is

implemented. However, the basic functionality required for this subsampling box, should be made

available via the VECMA toolkit.

Figure 13: UQP3-A, semi-intrusive cyclic, time scale separated, sampling efficiency, as a UQP1 on a slightly

changed multiscale model.

We can also consider replacing the fast dynamics altogether by a surrogate. In the proposal this was

coined UQP3-B (and again, for now we maintain this terminology, before ending task 2.2 we intend to

UQP3-A
semi-intrusive cyclic, time scale separated, sampling efficiency

UQP1

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 17 of 32

revisit this). The resulting UQP3-B is drawn in Figure 14. Again, UQP1 is applied to a slightly

changed multiscale model, where the fast dynamics is replaced by a surrogate model. Most software

that is used to construct cyclic multiscale simulations (such as e.g. MUSCLE2) have a plug and play

feature that would allow such a change. Than the main challenge is to construct the metamodel, based

on the uncertain input parameters of the fast and the slow dynamics, and based on prior knowledge on

where and how the slow dynamics would ‘steer’ the fast dynamics through its parameter space. Details

of this are of course highly application specific, but having some generic software for popular classes

of metamodeling approaches (e.g. building Gaussian Process based surrogates) in the VECMA toolkit,

and being able to easily set up the workflow as implicated by UQP3-B is desirable for efficient

multiscale UQ.

Figure 14: UQP3-A, semi-intrusive cyclic, time scale separated, with metamodelling, as a workflow where first

the metamodel is constructed for the fast dynamics, followed by a UQP1 on a slightly changed multiscale model,

where the fast dynamics is replaced by the metamodel.

2.3.5 Bringing everything together and towards more advanced UQPs

The discussions above leading to UQP1, UQP2, UQP3-A,B and UQP4 are in line with those that were

originally described in the proposal. However, we have now substantiated them, clearly embedded

them in the MMSF, and have shown how UQP2 – UQP4 could be composed out of UQP1, with

additional functionality that should be embedded into the execution of the multiscale model while

performing the multiscale UQ. For UQP2 we have also provided some estimates on performance,

which need to be tested in practice and extended to the other UQPs. And for UQP3-A and UQP3-B we

have shown some examples of applications using the ideas behind these UQPs to corroborate the

working hypothesis that underlies the UQP3-A,B family (QoI on the slow dynamics, most

computational effort in the fast dynamics, and tolerance in estimation of uncertainties).

To summarize, the UQPs introduced above have been a combination of what we in the proposal

coined control structure UQPs and optimization UQPs. The control structure UQPs are based on the

distinction between acyclic and cyclic multiscale models, and for the latter, in time scale overlap or

UQP3-B
semi-intrusive cyclic, time scale separated, metamodeling

UQP1Construct metamodel

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 18 of 32

time scale separation. For acyclic multiscale models the interaction regions and the relevant coupling

topologies (single, fixed, or dynamic number of instantiations of the submodels) do not seem to result

in other multiscale UQ approaches (albeit in much more complex workflows), and UQP2 seems well

defined (but see the discussion on optimisation UQPs below). For UQP3 and UQP4 more work is

required (in task 2.2 and 2.4) to further explore the implications of the control structures.

The optimization UQPs that were discussed are in relation to subsampling of expensive fast dynamics

and replacing a submodel by its surrogate. Another optimization could be to perform an intrusive UQ

on a submodel, and replace that submodel by the intrusive UQ variant. Table 1 provides an overview

of all possible UQPs along these two dimensions. The naming conventions are not yet agreed upon,

the deliverable reflects the current thinking in the consortium. The UQPs in green have been discussed

above and partly tested in VECMA (WP2, WP3, WP4). Those in orange are under investigation, and

depending on the needs of the applications, will be further developed. Note that the optimisation

dimension also allows combinations, e.g. combining subsampling (A) with metamodeling (B) is of

course an option. If that would lead to further reductions of execution time of the multiscale UQ using

subsampling or metamodeling alone remains to be seen.

Table 1: Overview of UQPs, along the control structure and optimization dimensions. The UQPs in green

have been discussed in the main text, those in orange require further analysis and development. The red

crosses indicate void combinations, and the question marks need further investigation.

Finally, in Table 1 we have not made deeper distinctions in terms of the coupling topologies. So, we

kept the cyclic with fixed or dynamic number of cycles together. Currently we don’t see the need to

split even further along this dimension. Likewise, for the number of instances of the single scale codes.

As discussed above, in the acyclic case this can in principle be captured by UQP2. For the cyclic case

this is a bit subtler. A cyclic time scale separated model with a single domain usually lies in interaction

single domain multi domain

None UQP1 UQP2 UQP4 UQP5 (?) UQP3

sub sampling (A) � ? ? UQP5-A UQP3-A

metamodelling
(B) � UQP2-B UQP4-B UQP5-B UQP3-B

instrusive single
scale (C) � UQP2-C ? UQP5-C UQP3-C

Control Structure

cyclic

time scale separation

O
p
t
i

m
i
z
a
t
i
o
n

none acyclic
time scale

overlap

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 19 of 32

region 3.1 (meaning that also the spatial scales are separated) and that a large number of instantiations

of the microscale model is required, basically leading to the Heterogeneous Multiscale Model. So,

UQP-5 already implies multiple instances of the microscale submodel. Moreover, from the ComPat

project we know that efficiently executing such Heterogeneous Multiscale Model requires a surrogate

model anyway, to prevent executing too many microscale models [31]. This suggests that the UQP5

family basically implies UQP5-B, and that the other UQP5 variants would be void. This requires

deeper analysis. The UQP3 family was constructed with a few assumptions (mainly that the QoI are

on the slow dynamics). This needs to be further explored and tested against our current applications

portfolio, and against all other multiscale models that we are aware of.

2.4 From UQPs to the VECMA toolkit

In this section we describe how we map the UQPs proposed in WP2 to a working and applicable

implementation for use by the VECMA project, as well as external users. This description reflects an

ongoing learning process, which is grounded in fast-track UQ activities performed up to this point and

will continue as the project progresses. We first summarize the low-level building blocks that we

identify from the implementation perspective, so-called UQ elements (or UQEs), then describe how

UQPs as a whole are reflected in the implementation. Lastly, we reflect on several key implementation

and execution aspects of using the proposed UQPs.

2.4.1 Decomposing UQPs into elements

UQPs are algorithmic specifications of UQ that are generic, extensible and widely applicable. The

algorithmic specification level is well suited for most scientific reflections, where the right conceptual

granularity is key in retaining both a simple means of discourse, and enough detail to identify key

differences. From the perspective of toolkit design and implementation, we work with a hierarchy of

perspectives (e.g., from generic to application-specific) and levels (e.g., from full application to

component to single lines of code). A fine-grained conceptual granularity is needed here, because fine-

grained concepts lead to simple functional implementations, that are more likely to be reused in other

places in the toolkit (i.e. help reduce duplicate code). To efficiently implement UQPs, we therefore

need to break them into smaller, and more generic pieces. Throughout the first year of VECMA, we

have realized that this is possible, and we refer to these pieces as UQ Elements (or UQEs). Likewise,

we realized that UQPs can be broken down, and therefore changed the nomenclature from Uncertainty

Quantification Primitives to Uncertainty Quantification Patterns (allowing us to retain the UQP

acronym).

Based on our current interpretation of UQPs, and our experiences in implementing UQ algorithms as

part of our fast-track activities, we have identified a preliminary range of relevant UQEs, which are

listed below. Please note that these definitions are likely to be revised as we obtain new insights:

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 20 of 32

• Parameter space specification: a definition of the parameter space in which uncertainty resides,

including a distribution of probabilities that parameters have a specific value.

• Sampler: a component which, given a parameter space specification and probability

distributions, generates random samples for a specific application.

• Encoder: a component that incorporates application-specific information in a generic

definition of a UQ procedure (also called application mapping), enabling it to be carried out as

a computation using e.g., a supercomputer.

• Decoder: a component that extracts generic UQ results from the (application-specific) output

of a simulation run, enabling generic UQ tools to analyse the data and plan subsequent UQ

activities.

• Collation: the process of aggregating the data generated by a range of executions into metrics

that reflect the ensemble as a whole.

• Analysis: the process of extracting outcomes from collated data, in accordance with

predefined specifications such as to allow for human interpretation or further workflow

guidance.

• Probability distribution: a definition of the likelihood of a parameter assuming a particular

value within its range of possible values.

• Worker: an independent task that serves to perform pre-instructed steps of a UQ procedure.

These elements help design and implementation activities, as many of them are essential to a range of

UQPs. Consequently, we will be able, in many cases, to reuse existing code components not only

when applying existing UQPs to new applications, but also when implementing new UQPs altogether.

2.4.2 Implementing UQPs

Within VECMA we focus largely on UQ algorithms that either leave a single-scale model

implementation entirely untouched, or replace the implementation with a surrogate model, which can

be either a stochastic approximation (trained through previous simulation work), or a cheaper and less

accurate version of its original counterpart. As a result, a key component of implementing UQPs is to

establish a generic mechanism for adding UQ around individual models. We provide an overview of

such a mechanism in Figure 15, basically realizing UQP1:

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 21 of 32

Figure 15: Generic implementation mechanism for performing UQ on a particular (single-scale) model.

In this mechanism we (a) define the parameter space in which we wish to do UQ, including parameter

probability distributions, (b) draw samples from this space to create a campaign of runs, (c) encode the

samples to translate them to definitions that can be executed as computations, (d) evaluate/execute the

model implementation, (e) decode the results to extract the generic UQ output from the model, (f)

analyse the UQ output to facilitate human interpretation and/or guide subsequent tasks, and (g) Refine

and repeat steps b-f as needed, based on the results obtained in step f.

UQ, when performed in this way, is inherently a stochastic process both in a single- and multi-scale

model context. As such, the exact sequence of tasks is not always known in advance, and the rules for

controlling the flow of activities may rely on complex algorithms. To accommodate this in our

implementation, we choose to implement UQPs as code-driven generic recipes as opposed to complex

data structures. Although the exact implementation of these recipes may vary per tool, the use of

Python code is most prevalent throughout the toolkit.

2.4.3 Key considerations for implementation and execution

For researchers to apply UQPs in a meaningful way, it is essential that their implementations are

generically applicable, easy to use, and can be executed effectively on existing HPC platforms:

Generality: Implemented UQPs will only be of use to the full community if they are indeed

application-agnostic. In VECMA we seek to preserve generality of UQPs in several ways. First,

through the introduction of encoders and decoders in our toolkit (i.e., in EasyVVUQ) we isolate much

of the application-specific information from the UQ logic. Second, we incorporate additional UQP

functionalities (such as sampling and ensemble execution) at a low, application-agnostic level in our

toolkit. Third, in our FabSim3 automation toolkit we use a plugin system for application- and domain-

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 22 of 32

specific functionalities, with plugins that rely on generic UQEs present elsewhere in the toolkit. In

doing so we seek to encourage a separation of concerns, modularity, as well as re-use of predefined

elements.

Ease of use: We seek to make implemented UQPs easy to use, and thereby promote uptake, as follows:

First, we provide tutorials and example applications. For instance, the M12 release will feature at least

three example applications. Second, we provide a range of tests, including automated unit and

functional tests, peer-testing by developers, and thorough testing by internal and external alpha users

every three months. Third, we provide active support to help new applications adopt the VECMA

toolkit, and along with that the UQPs.

Execution: Within VECMA, many UQPs involve the intelligent sampling, resampling and coupling

of single-scale models. If done naively, UQ across different models leads to an explosion in number of

simulation evaluations, and even with advanced optimizations many applications will require

thousands of jobs or more, while most supercomputer schedulers tend to support only O(10) job

executions at a given time. To make workflows with such large job counts tractable, we provide two

mechanisms. First, we are able to quickly (and incrementally) generate very large numbers of job

definitions using the sampling and encoding routines in EasyVVUQ. Second, we are currently

incorporating a range of so-called pilot job managers within the VECMA toolkit (for instance, QCG

Pilot Job Manager (QCG-PJM) and RADICAL Cybertools). These pilot job managers enable users to

create a single container job on a remote supercomputer, and subsequently schedule 1000s of jobs or

more within that job container. Due to the complex mechanisms that may be used to control the flow

of UQ activities, we will require these pilot jobs to be controlled dynamically at runtime for advanced

applications. Within the VECMA toolkit, we seek to establish this functionality, at scale, for the first

time to our knowledge.

3 Conclusions and future work

WP2 is on track, and well underway to finalise task 2.2 as planned. Having established the main UQPs,

and understanding how to break down the basic building block UQP1 into a number of generic

building blocks (UQEs) and how to implement those in software, lays the groundwork for WP2. In

close concertation with WP3 and WP4 the next steps will now be to further explore the UQPs as

defined above, to test them in practice, to develop performance models and test those, and to look in

more detail in the more advanced UQPs (UQP2-5). Moving into the next phase of VECMA also

means that in WP2 we will now also start to investigate formal methods for validation and verification

of multiscale models.

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 23 of 32

4 Annexes

4.1 The Multiscale Modelling and Simulation Framework

The MMSF provides an abstract way to understand the (computational) structure of multiscale models

and multiscale simulations. Over the years, and in context of a series of EU funded projects, we have

built strong confidence that the MMSF is an overarching framework that captures the characteristics of

multiscale computing. Without going in much details here, we will highlight a few notions from the

MMSF that will guide the definitions and design of UQPs. For full details we refer to [19,20] and

references therein.

Figure 16: The interaction regions on the scale map, process A resides in region 0, and process B can then reside

in 5 regions, leading to 5 types of interactions. 0 – scale overlap, Multiphysics; 1 – time scale separation; 2-

spatial scale separation; 3.1 – classical micro-macro coupling; 3.2 – micro-macro coupling where a fast process

on a large spatial scale is coupled to a slow process on a small spatial scale.

The first notion is the Scale Separation Map (SSM) and the associated interaction regions between

two processes placed on the SSM, see Figure 16. Another relevant notion is the relation between the

computational domains of two processes. These can either overlap (single domain) or be multi domain,

where both computational domains exchange information through a boundary or small overlap region.

Note that single-domain vs multi-domain is a property that is additional to the notion of interaction

regions, that is for all interaction regions in Figure 16 one can find examples of single-domain or

multi-domain multiscale applications. This has immediate consequences on how scale bridging

information is exchanged between single scale models, and this notion will also have impact on UQPs.

The notion of the interaction regions in combination with the relation between the computational

domains leads to a powerful classification of multiscale systems.

Next we define a generic Submodel Execution Loop (SEL) that abstracts the computations in all single

scale models as a while loop over three abstract operators (initialisation, a ‘solver’, and a boundary

condition operator) and two operators that can observe the state of a single scale model (one inside the

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 24 of 32

while loop, and a second upon termination of a single scale model). We find that in coupling together

single scale models in a multiscale model, only four coupling templates, defined as directed

communication from an observation operator of one single scale model to a computing operator of

another single scale model. Figure 17 shows the SEL of two processes, and an example of a coupling

template in case the two processes would be time scale separated (so interaction region 1, 3.1, or 3.2).

This coupling template is the call-release template.

Figure 17: Example of two processes, interaction region 1, 3.1, or 3.2, showing the SEL and the coupling

templates (in this case the call – release pair).

Next, we introduce the notion of multiscale computing, and the two main multiscale computing

paradigms, acyclic (or loosely coupled, or workflows) and cyclic (or tightly coupled), see Figure 18.

In acyclic multiscale computing one single scale model provides input to another, and single scale

models are executed once. This can be seen as a traditional workflow, with the difference that the scale

bridging, the arrow between the single scale models could entail a quite complicated hand-shake. In

general, the fact that these models operate on different scales means that the very nature of the models

may be radically different – for example, one might be particulate/stochastic, the other continuum

based and deterministic. Getting a “handshake” between both models is frequently complicated and

requires multiple steps and computations. In cyclic multiscale computing, single scale models call

each other in an iterative loop, and therefore single scale models can execute many times. For such

cyclic computing dedicated coupling libraries are required.

Figure 18: Acyclic (left) and cyclic (right) multiscale applications

Finally we need to specify how many instances of single scale models are executed, if this number is

fixed or dynamic, and in case of cyclic applications, how many synchronization points are required (so

f := finit

While (not
stop)

Oi(f)
f=S(f)
f=B(f)

End (While)

Of(f)

submodel

f := finit

While (not
stop)

Oi(f)
f=S(f)
f=B(f)

End (While)

Of(f)

submodel

temporal
scale

spatial
scale

Dx

L

Dt T temporal
scale

spatial
scale

Dx

L

Dt T

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 25 of 32

how many cycles are passed in the cyclic application) and if the number of synchronization points are

static or dynamic. All possible combinations lead to 9 different coupling topologies, see Figure 19.

Figure 19: Coupling topologies

The Multiscale Modelling Language (MML) translates all these concepts into a graphical (gMML)

and machine readable (xMML) specification of the multiscale model that contains in principle

sufficient information for execution of the multiscale model in any type of computing environment. In

the earlier MAPPER and COMPAT projects we have demonstrated all these capabilities in the context

of Distributed Multiscale Computing (DMC) and High Performance Multiscale Computing (HPMC).

Another relevant feature of the MMSF that may be of relevance to UQPs is the notion of task graphs

for multiscale computing. Borgdorff et al. already introduced task graphs when specifying the

foundations of the MMSF [19]. As shown in Figure 20, a task graph can be derived from an xMML

specification of a multiscale application, and the task graph in turn can be used as input for scheduling

software. We have demonstrated that task graphs can automatically be derived from xMML [19] and

demonstrated the use of task graphs for one specific application [27].

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 26 of 32

Figure 20: Several stages of description of a multiscale model in the MMSF, starting from the Scale Separation

Map, details of the Coupling Topology are added, followed by a full specification in terms of xMML, from

which a Task Graph is derived that can then be used as input to scheduling software.

Task graphs were introduced in the MMSF for deadlock

detection, validity checking, and for estimating

computational costs and scheduling. An example of a task

graph for the In-Stent Restenosis application (see deliverable

D4.1) is shown in Figure 22.

A task graph is a directed acyclic graph of tasks (the nodes)

and their dependencies or data flows (the edges). It can be

used for scheduling on parallel and/or distributed computing

resources [32] and in the context of VECMA, to apply UQPs

on the task graph. It can also be seen as a serialized or

unfolded graph of the MML description, which may be

cyclic. Task graphs can get extremely large, growing

exponentially in the number of temporally scale separated

submodels, exacerbated by submodels that have a lot of

iterations. A methods to reduce the number of nodes is

collapsing redundant nodes, which is also demonstrated in

[19]. In fact, Figure 22 shows such reduced graph.

4.2 Examples of applying semi-intrusive multiscale UQ algorithms

4.2.1 1D reaction-diffusion system

The first case study is a 1D reaction-diffusion model with slow diffusion and fast reaction [10]. The

response of this system consists of two two-dimensional fields, which we name u and v. The UQ result

obtained with the MC of the final time step is presented in Figure 22. The results of the mean value for

SSM Coupling topology (x)MML Task graph Scheduling

Figure 21: example of a task graph,

showing the initialisation and first two

cycles in the ISR3D model. Note that

in the ISR application typically a few

thousands of full cycles are performed.

������

��	�
��

���������

����

��������

���

���������

���

��������

���

���������

���

��������

���

��	�

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 27 of 32

u and v are approximately reversed. At the same time, the standard deviations of u and v have a similar

pattern. However, since the maximum value in space of u is much greater than v, the relative

uncertainty of v represented by the coefficient of variation reaches 100% at some locations, where this

value for u is about 36%. The execution time for the tested multiscale UQ algorithms is presented in

Figure 23.

Figure 22: The expected value and the standard deviation of the two systems estimated by the Monte Carlo

method

Figure 23: Comparison of UP methods in terms of execution time. Here and later, Nmeta is the number of samples

used to build the data-driven metamodel, NPC is the truncated power in the Polynomial Chaos method, and "r.s"

denotes the reference solution. The numbers above the bars are the mean relative errors in the results of the

standard deviation obtained by the methods versus the MC results. The execution time broken down into time

spent in respectively the macroscale model, the microscale model, and the interpolation test (only for the SIMC).

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 28 of 32

4.2.2 Gray-Scott model

The second example is a two-dimensional Gray-Scott model as presented in [10]. The UQ result

obtained with the MC of the final time step is presented in Figure 24. The results of the mean value are

still quite close to the patterns from Figure 24, and this results for u and v are approximately reversed.

At the same time, the standard deviations of u and v have a similar pattern. However, since the

maximum value in space of u is much greater than v, the relative uncertainty of v represented by the

coefficient of variation reaches 100% at some locations, where this value for u is about 36%.

Figure 24: Uncertainty estimation result obtained by the MC method: the mean value (left column), the standard

deviation (central column) and the coefficient of variation (right column) of the concentration u (upper row) and

v (bottom row).

A comparison of the computational time and the error in the standard deviation by several semi-

intrusive multiscale UQ methods is presented in Figure 25, where the MC result is used as a reference

solution. The SIMC and metamodeling with GP result in a significant drop in the execution time while

the coupled intrusive and non-intrusive PC and the Galerkin methods are computationally more

expensive than the MC method. Moreover, the error in the results of the last two methods exceeds

60%. The high value of the error is due to the nonlinear nature of the Gray-Scott model, which cannot

be approximated by a series of low order polynomials. The results obtained by the SIMC and the

metamodeling with the GP are much closer to the MC results. In this example, the interpolation test in

the SIMC is not passed, and, therefore, 50 samples are used to compute uncertainty with the MC,

which produces a 7.7% error instead of 11% when the result of the SIMC is accepted.

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 29 of 32

Figure 25: Comparison of the performance of the UQ methods applied to the Gray-Scott model, where "r.s"

denotes the reference solution, and the percentage indications above the columns are the mean relative error in

the estimates of the standard deviation.

4.2.3 ISR2D

The next application is a 2-dimensional multiscale model of in-stent restenosis (ISR2D) [22]. Figure

26a shows the estimated mean value obtained by four UQ methods that were tested: the quasi-Monte

Carlo (QMC) and the semi-intrusive multiscale methods, where two metamodels are obtained with a

data-driven method (DD Meta I and DD Meta II) and one by simplified physics (Phy Meta). The 95%

bootstrap confidence interval is plotted as a red shaded area around the results from the QMC method,

as presented in [23]. All three metamodeling results result in a statistically significant underestimation

of the mean value (two-valued t-test, p < 0.01).

ISR2D is subject to both epistemic and aleatory uncertainty. Some model inputs are uncertain due lack

of knowledge, and the model is also stochastic itself because it simulates the natural variability of the

process of interest. We estimated the total standard deviation, as well as an upper bound of the partial

standard deviation due to aleatory model uncertainty. As Figure 26b shows, the metamodeling

estimates are high, but for the data-driven metamodels still within the 95% confidence interval of the

QMC result.

The coefficients of variation (CoV) shown in Figure 26c are equal to the ratio between the (partial)

standard deviation and the mean value, and are a measure of the relative model output uncertainties.

Here we observe that the underestimation of the mean value leads to the overestimation of the CoV.

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 30 of 32

Figure 26d-g show the distribution of the cross-sectional areas at the final simulation time step. The

dashed vertical line indicates a restenosis threshold, defined as 50% occlusion of the original lumen

area. Thus, about 9.7% out of all samples obtained by QMC result in restenosis. The data-driven

metamodel results are about half this value. The results with the physical metamodel shows result of

only 1.8%, and a shift of the probability density function to the left is visible.

Figure 26: Analysis of the uncertainty measures by the four UQ methods: the quasi-Monte Carlo (QMC) method,

metamodelling methods by data-driven (DD meta I and II) approach and by simplified physics (phys meta).

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 31 of 32

Figure 27 shows the time needed for a single model run using the four UQ methods: the quasi-Monte

Carlo (QMC), the two different data-driven metamodels (DD Meta I and II), and the metamodeling by

the simplified physical surrogate. The light colors indicate the total execution time of the whole

multiscale model, and the dark colors indicate the portion of the time taken by the micro model or

surrogate. For the metamodeling methods, the indicated time includes the construction of the

metamodels.

DD Meta I reduces total runtime by almost half. DD Meta II, which uses less data, is faster still, at five

times the speed of the original. The physical metamodel is fastest, but only by a small margin over DD

Meta II.

Figure 27: Comparison of the computational time per one model run with different UQ methods.

5 References

[1] A.G. Hoekstra, B. Chopard, D. Coster, S. Portegies Zwart, P. V. Coveney, Multiscale computing for
science and engineering in the era of exascale performance, Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci. 377 (2019) 20180144. doi:10.1098/rsta.2018.0144.

[2] S. Alowayyed, D. Groen, P. V. Coveney, A.G. Hoekstra, Multiscale Computing in the Exascale Era, J.
Comput. Sci. 22 (2017) 15–25. doi:10.1016/j.jocs.2017.07.004.

[3] A.G. Hoekstra, B. Chopard, P. V. Coveney, Multiscale modelling and simulation: a position paper,
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372 (2014) 20130377. doi:10.1098/rsta.2013.0377.

[4] P.M.A. Sloot, A.G. Hoekstra, Multi-scale modelling in computational biomedicine, Br. Bioinform. 11
(2010) 142–152. doi:10.1093/bib/bbp038.

[5] S. Karabasov, D. Nerukh, A.G. Hoekstra, B. Chopard, P. V. Coveney, Multiscale modelling: approaches
and challenges, Philos. Trans. R. Soc. A. 372 (2014) 20130390. doi:10.1098/rsta.2013.0390.

[6] R.H. Johnstone, E.T.Y. Chang, R. Bardenet, T.P. de Boer, D.J. Gavaghan, P. Pathmanathan, et al.,
Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models?,
J. Mol. Cell. Cardiol. 96 (2016) 49–62. doi:10.1016/J.YJMCC.2015.11.018.

[7] R.C. Smith, Uncertainty quantification: theory, implementation, and applications, SIAM, 2013.
[8] O.P. Le Maître, O.M. Knio, Spectral Methods for Uncertainty Quantification, Springer Netherlands,

Dordrecht, 2010. doi:10.1007/978-90-481-3520-2.
[9] X. Wan, G.E. Karniadakis, An adaptive multi-element generalized polynomial chaos method for

stochastic differential equations, J. Comput. Phys. 209 (2005) 617–642. doi:10.1016/J.JCP.2005.03.023.

VECMA - 800925

 [D2.1_Multiscale_UQ_UQPs] Page 32 of 32

[10] Nikishova, Anna, A.G. Hoekstra, Semi-intrusive uncertainty quantification for multiscale models, ArXiv
Prepr. (2018) 1806.09341.

[11] B. Wang, T. Chen, Gaussian process regression with multiple response variables, Chemom. Intell. Lab.
Syst. 142 (2015) 159–165. doi:10.1016/J.CHEMOLAB.2015.01.016.

[12] O.K. Oyebamiji, D.J. Wilkinson, P.G. Jayathilake, T.P. Curtis, S.P. Rushton, B. Li, et al., Gaussian
process emulation of an individual-based model simulation of microbial communities, J. Comput. Sci. 22
(2017) 69–84. doi:10.1016/J.JOCS.2017.08.006.

[13] T. Zhan, L. Fang, Y. Xu, Prediction of thermal boundary resistance by the machine learning method, Sci.
Rep. 7 (2017) 7109. doi:10.1038/s41598-017-07150-7.

[14] Y. Liu, J. Guo, Q. Wang, D. Huang, Prediction of Filamentous Sludge Bulking using a State-based
Gaussian Processes Regression Model, Sci. Rep. 6 (2016) 31303. doi:10.1038/srep31303.

[15] M. Gerritsma, J.-B. van der Steen, P. Vos, G. Karniadakis, Time-dependent generalized polynomial
chaos, J. Comput. Phys. 229 (2010) 8333–8363. doi:10.1016/J.JCP.2010.07.020.

[16] R. Archibald, M. Chakoumakos, T. Zhuang, Characterizing the elements of Earth’s radiative budget:
Applying uncertainty quantification to the CESM, Procedia Comput. Sci. 9 (2012) 1014–1020.
doi:10.1016/J.PROCS.2012.04.109.

[17] J. Feinberg, H.P. Langtangen, Chaospy: An open source tool for designing methods of uncertainty
quantification, J. Comput. Sci. 11 (2015) 46–57. doi:10.1016/J.JOCS.2015.08.008.

[18] N.E. Owen, P. Challenor, P.P. Menon, S. Bennani, Comparison of Surrogate-Based Uncertainty
Quantification Methods for Computationally Expensive Simulators, SIAM/ASA J. Uncertain. Quantif. 5
(2017) 403–435. doi:10.1137/15M1046812.

[19] J. Borgdorff, J.-L. Falcone, E. Lorenz, C. Bona-Casas, B. Chopard, A.G. Hoekstra, Foundations of
distributed multiscale computing: Formalization, specification, and analysis, J. Parallel Distrib. Comput.
73 (2013) 465–483. doi:http://dx.doi.org/10.1016/j.jpdc.2012.12.011.

[20] B. Chopard, J. Borgdorff, A.G. Hoekstra, A framework for multi-scale modelling, Philos. Trans. R. Soc.
A. 372 (2014) 20130378. doi:10.1098/rsta.2013.0378.

[21] B. Chopard, J.-L. Falcone, P. Kunzli, L. Veen, A. Hoekstra, Multiscale modeling: recent progress and
open questions, Multiscale Multidiscip. Model. Exp. Des. 1 (2018) 57–68. doi:10.1007/s41939-017-
0006-4.

[22] A. Nikishova, L. Veen, P. Zun, A.G. Hoekstra, Semi-intrusive multiscale metamodelling uncertainty
quantification with application to a model of in-stent restenosis, Philos. Trans. R. Soc. A Math. Phys.
Eng. Sci. 377 (2019) 20180154. doi:10.1098/rsta.2018.0154.

[23] A. Nikishova, L. Veen, P. Zun, A.G. Hoekstra, Uncertainty Quantification of a Multiscale Model for In-
Stent Restenosis, Cardiovasc. Eng. Technol. (2018) 1–14. doi:10.1007/s13239-018-00372-4.

[24] J.-L.J.-L. Falcone, B. Chopard, A. Hoekstra, MML: towards a Multiscale Modeling Language, Procedia
Comput. Sci. 1 (2010) 819–826. doi:DOI: 10.1016/j.procs.2010.04.089.

[25] J. Borgdorff, E. Lorenz, A.G. Hoekstra, J. Falcone, B. Chopard, A Principled Approach to Distributed
Multiscale Computing, from Formalization to Execution, in: E-Science Work. (EScienceW), 2011 IEEE
Seventh Int. Conf., 2011: pp. 97–104. doi:10.1109/eScienceW.2011.9.

[26] J. Borgdorff, M. Mamonski, B. Bosak, K. Kurowski, M. Ben Belgacem, B. Chopard, et al., Distributed
multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment, J. Comput.
Sci. 5 (2014) 719–731. doi:http://dx.doi.org/10.1016/j.jocs.2014.04.004.

[27] J. Borgdorff, C. Bona-Casas, M. Mamonski, K. Kurowski, T. Piontek, B. Bosak, et al., A Distributed
Multiscale Computation of a Tightly Coupled Model Using the Multiscale Modeling Language, Procedia
Comput. Sci. 9 (2012) 596–605. doi:10.1016/j.procs.2012.04.064.

[28] J. Borgdorff, M. Ben Belgacem, C. Bona-Casas, L. Fazendeiro, D. Groen, O. Hoenen, et al.,
Performance of distributed multiscale simulations, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372
(2014) 20130407. doi:10.1098/rsta.2013.0407.

[29] D. Groen, J. Borgdorff, C. Bona-Casas, J. Hetherington, R.W. Nash, S.J. Zasada, et al., Flexible
composition and execution of high performance, high fidelity multiscale biomedical simulations,
Interface Focus. 3 (2013) 20120087. doi:10.1098/rsfs.2012.0087.

[30] M.B. Belgacem, B. Chopard, J. Borgdorff, M. Mamonski, K. Rycerz, D. Harezlak, Distributed
multiscale computations using the MAPPER framework, Procedia Comput. Sci. 18 (2013) 1106–1115.

[31] S.A. Alowayyed, Patterns for multiscale computing, University of Amsterdam, 2018.
[32] Y.-K. Kwok, I. Ahmad, Benchmarking and Comparison of the Task Graph Scheduling Algorithms, J.

Parallel Distrib. Comput. 59 (1999) 381–422. doi:10.1006/jpdc.1999.1578.

