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1 Executive summary 

In this deliverable we report on the progress and results obtained in Work Package 2 during the second 

year of the VECMA project. More specifically, we discuss current results from task 2.3 (Advanced 

multiscale UQ algorithms, including intrusive approaches) and task 2.4 (Advanced UQP development 

based on task 2.3). These tasks started in the second year of VECMA and are scheduled to continue 

until the end of the project (M36). 

 

We have developed new, advanced algorithms to perform uncertainty quantification (UQ) for 

multiscale models, using novel methods for surrogate modelling and sensitivity analysis. In a multiscale 

context, surrogate models can be used to replace expensive single-scale model components, thereby 

speeding up computations and enabling UQ tasks that require many model evaluations. In many 

situations, the single-scale component possesses intrinsic uncertainty, for example because of internal 

chaotic behaviour. This uncertainty can be accounted for with a stochastic surrogate, constituting an 

intrusive approach at the level of the single-scale component. Furthermore, we developed an approach 

to employ sensitivity analysis for model reduction of multiscale systems, thereby facilitating more 

efficient uncertainty estimation. 

 

We discuss how these algorithms connect to the family of UQ patterns that was discussed extensively 

in a previous deliverable (D2.1). They are being implemented in the “EasySurrogate” toolkit, thereby 

becoming part of the overall software toolkit VECMAtk. Furthermore, we report on our results setting 

up multiscale Verification & Validation (V&V) procedures and their implementation in VECMAtk. 

Finally, we discuss scaling of UQPs towards the exascale.  

 

Altogether, WP2 and its tasks 2.3 and 2.4 are well underway. As both tasks continue until M36, we 

expect further results beyond what is reported here. For the third year of VECMA we aim to consolidate 

our newly developed algorithms, streamline their software implementation and integrate them 

further into the VECMA tookit. 
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2 Main body of the report  

2.1 Introduction 

VECMA project Work Package 2, entitled Algorithms & Formalisms, is focused on designing and 

formalizing algorithms for multiscale VVUQ (Verification, Validation and Uncertainty Quantification). 

Task 2.3 (Advanced multiscale UQ algorithms, including intrusive approaches) and task 2.4 (Advanced 

UQP development based on task 2.3) started as planned in M12 and M16, respectively. In this report 

we present the results obtained to date under these two tasks, while we note that both are scheduled 

to continue until M36 so that further results beyond those reported here are to be expected. 

 

Previously, in VECMA deliverable D2.1 we reported on the conceptual basis and first results of WP2, 

including discussions of levels of intrusiveness of UQ methods, of the Multiscale Modelling and 

Simulation Framework (MMSF), and of a family of UQ patterns (UQPs) distinguished by their control 

structures and optimization dimensions (see Table 1 of D2.1). Here we build on the conceptual 

groundwork laid in D2.1. We present newly developed algorithms for surrogate modelling and 

sensitivity analysis, aimed at multiscale models. Next, we discuss translation and generalization of 

these algorithms into UQPs. Furthermore, we report on our results setting up multiscale V&V 

procedures. The implementation of UQPs and VVPs in the VECMAtk software toolkit is discussed, as is 

their scaling towards the exascale. 

2.2 Advanced multiscale UQ algorithms 

2.2.1 Surrogate modelling 

2.2.1.1 Introduction 

The construction and use of surrogate models (also referred to as metamodels or emulators) is a 

central computational strategy in UQ [1]. A surrogate model is trained or fitted to the output of a 

limited number of evaluations of an expensive computational model. Once trained, the surrogate can 

replace the expensive model and thereby enable tasks that require many model evaluations, e.g. 

detailed assessment of forward uncertainty propagation, or Bayesian model calibration. In the family 

of UQPs described in D2.1, surrogate modelling is a category of optimization UQPs, denoted UQP-B. 

 

In the context of multiscale systems, surrogates are particularly interesting, because simulation with 

multiscale models is often very expensive. Besides the simple approach of replacing the entire 

multiscale model by a surrogate, a more advanced approach is to use surrogates for replacing 
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expensive single-scale model components. Doing this in an adequate manner can be complicated 

because of interdependencies between model components. In Figure 1 a schematic example is shown 

of a macromodel M and a single micromodel µ with a cyclic coupling (so M and µ are mutually 

dependent). In many practical cases, a single-scale model which represents the small spatial and/or 

temporal scales, i.e. µ in Figure 1, takes up most of the computational burden. It is therefore the most 

natural target for replacement by a surrogate, denoted µ" . When the response of µ that feeds back to 

M is not uniquely determined by the instantaneous input from M into µ (e.g. because of internal 

chaotic behaviour of µ), the uncertainty of the response can be accounted for by a stochastic 

representation, i.e. a stochastic surrogate µ" . This can be viewed as an intrusive approach at the level 

of the single-scale component, see also D2.1. 

 

The approximation errors made by the surrogate can amplify over time; however, this situation is 

alleviated for two reasons. First, the Quantities of Interest (QoIs) are often outputs of the macromodel, 

not of the micromodel. Secondly, in many applications we can tolerate an instantaneous error in the 

outputs of the macroscopic model. Let us denote the macroscopic outputs of the (𝑀, 𝜇) system by 𝑄, 

and let 𝑄)  correspond to the output of the (𝑀, 𝜇") system, see also Figure 1. Then our goal is to create 

a surrogate such that 𝑄)  preserves some overall characteristic of 𝑄 . An example is the climate 

application, where we wish to create a microscopic surrogate which preserves the time-averaged 

climate statistics of the macro model. 

 

Figure 1: Schematic of a multiscale model consisting of a macromodel M coupled to a micromodel 

µ. The QoI (Quantity of Interest), denoted Q, is an output of the macromodel. The computationally 

most expensive component (often the micromodel) can be replaced by a surrogate. 
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Some techniques to construct surrogates that are well-established in the UQ domain are Non-Intrusive 

Spectral Projection (based on Polynomial Chaos Expansion), interpolating polynomials resulting from 

stochastic collocation, and Gaussian Process regression (aka Kriging). They are not specifically aimed 

at the multiscale setting however. A step forward was the semi-intrusive approach [2] (also reported 

in D2.1) where it was shown how these existing techniques can be successfully used as elements in a 

multiscale UQ framework. 

 

Below we give an overview of newly developed, advanced techniques to obtain a surrogate model 𝜇". 

Specifically, we discuss: 

1. Stochastic surrogates, 

2. Reduced surrogates, 

3. Surrogates based on convolutional neural networks 

2.2.1.2 Stochastic surrogates 

A given macroscopic state can correspond to multiple microscopic states. Therefore, we develop 

methods for stochastic surrogate modelling (or stochastic parameterization) of the microscopic model, 

which take the uncertainty in the microscopic state into account. Specifically, we are developing 

approaches that resample 𝜇  data coming from a reference simulation, when conditioned on 

macroscopic states. Let 𝑋	be some collection of macroscopic variables. This could include the QoI 𝑄, 

although not necessarily. In general, our surrogate 𝜇"	takes the form of a conditional probability density 

function, i.e. 

 

𝜇"!"# 	∼ 	 𝜇!"#	|	𝑋)! , 𝑋)!$#, 𝑋)!$%, …	, 𝜇"! , 𝜇"!$#, 𝜇"!$%, …  (1) 

 

Here, the index j corresponds to a given time 𝑡!. Thus, in addition to a stochastic nature, we also have 

the option of embedding memory into the surrogate by conditioning on multiple time steps into the 

past. This is especially relevant when there is no clear time scale separation between the macromodel 

and the micromodel. In essence, by conditioning as  𝜇!"#	|	𝑋)! , 𝑋)!$#, 𝑋)!$%, …	, 𝜇"! , 𝜇"!$#, 𝜇"!$%, …  we 

identify a subset of candidate 𝜇!"#reference samples, from which we randomly sample one value (i.e. 

𝜇"!"#) to be used as the prediction for the next time step 𝑡!"#. 

 

Eq. (1) describes a class of different models. We implemented a model based on the so-called “binning” 

concept from [3], see [4]. Here, the space of conditioning variables is discretized into a set of non-

overlapping bins, where each bin contains a given number of reference samples from 𝜇. This is a direct 
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way to identify the required subset of reference samples, since the conditioning variables will lie inside 

a single bin at every time step. The results of the implementation were positive [4]. Notwithstanding 

this, a downside of the approach is that it is subject to the curse of dimensionality, since the number 

of bins grows exponentially with the number of time-lagged conditioning variables. 

 

To circumvent this problem, we developed a conditional resampling model based on probabilistic 

classification via machine learning [7]. Now, instead of binning the conditioning variables, we bin the 

output (i.e. the reference 𝜇 samples), into 𝐾 non-overlapping bins. The advantage is that this avoids 

the curse of dimensionality, since we do not include memory in the output, i.e. the number of bins 

remains equal to 𝐾. We now use a neural network to learn a discrete Probability Mass Function (PMF) 

over the 𝐾output bins, conditional on the time-lagged macroscopic input features. At any time step, 

we can sample a bin index from this PMF, and subsequently resample 𝜇reference data from the 

designated bin, see Figure 2. 

 

We applied these stochastic surrogates to problems in the context of climate modelling. As mentioned 

earlier, the goal here is to obtain a surrogate such that the overall, time-averaged statistics of the 

macroscopic solver are accurately captured. The results so far are positive, when applied to a simplified 

atmospheric model [7] and to a more complex two-dimensional ocean circulation model [4]. 

Furthermore, we are extending the neural network approach to include a kernel-mixture network [14], 

enabling construction of a continuous Probability Density Function (PDF) instead of the discrete PMF 

used until now. 

Figure 2: Schematic representation of the neural network used for resampling-based stochastic surrogate 

modeling, as proposed in [7]. 
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2.2.1.3 Reduced surrogates 

We reiterate that our goal is to create a surrogate such that the macroscopic output 𝑄)  preserves some 

overall characteristic of 𝑄, see again Figure 1. It is not uncommon, e.g. in a climate context, that the 

QoI is some global (spatially integrated) quantity. We have developed alternative microscopic models 

𝜇", which give the same statistics for a given set of global QoIs. The unclosed component of these new 

microscopic models, which is the only part for which we must learn a surrogate, is reduced in size by 

several orders of magnitude compared to the original microscopic model 𝜇. Effectively, instead of 

creating a surrogate for a high-dimensional dynamic field, we only need to create a surrogate for a 

small number of scalar time series. We denote these as reduced surrogates, and the methodology is 

described in [5,6]. 

In short form, the microscopic model is given by the following expansion: 

𝜇"(𝑥, 𝑦, 𝑡) =4 τ&(𝑡)𝑃&(𝑥, 𝑦, 𝑡)
'

&(1

 

Here, τ&(𝑡) are the generated time series for which we must learn a surrogate, and the 𝑃&(𝑥, 𝑦, 𝑡) are 

dynamic fields, which are completely made up of macroscopic variables. Hence, the 𝑃&  do not need to 

be learned from data. In principle we could train any type of surrogate on the τ time series data. 

However, the plan for the next steps involves training the stochastic surrogates of Section 2.2.1.2 on 

this reduced training data, resulting in a reduced, stochastic surrogate model. 

2.2.1.4 A surrogate based on convolutional neural networks 

Building on the semi-intrusive approach from [2], we are developing a (deterministic) surrogate model 

based on a convolutional neural network (CNN). It is tested on the ISR2D model, a two-dimensional 

multiscale simulation of the post-stenting healing response of an artery [8,9]. In this model, the 

component for blood flow simulation is the computationally most expensive. It takes around 80% of 

the computational time, and the potential gain in performance obtained by replacing it with a 

surrogate model in the semi-intrusive UQ scenario is therefore highest. 

 

The mapping between input and output of the blood flow simulation can be considered as a function 

𝑓, which takes the geometry matrix 𝜍 and the inlet blood velocity 𝑣 as input and produces a 2 × 𝑘 -

dimensional vector of wall shear stress (WSS) magnitudes, 𝜏)** as the output: 

𝜏)** = 𝑓(𝜍, 𝑣) 

where 𝑘 = 150 is the grid size along x axis, 𝜍 = @𝜍&!A ∈ 𝑅+×+. The geometry matrix 𝜍 was used for the 

blood flow simulation. The surrogate model 𝑓D replaces the original blood flow model 𝑓(𝜍, 𝑣) and offers 

an approximate prediction of wall shear stress in a reduced amount of time. 
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The CNN model follows the network structure proposed in [10] and was optimized to fit our 

application. The model consists of three parts: shape encoding, nonlinear mapping and stress 

decoding, as shown in Figure 3. More information on these different parts, as well as details on the 

training of the CNN model and its application to the UQ analysis of the ISR2D model are given in the 

Appendix (section 4.1). 

 

 
 

2.2.2 Sensitivity analysis based dimension reduction of multiscale models 

Here we discuss how sensitivity analysis (SA) of a single scale model is employed in order to reduce the 

input dimensionality of the related multiscale model, thereby improving the efficiency of its 

uncertainty estimation. The approach is illustrated with two examples based on a reaction model and 

the standard Ornstein-Uhlenbeck process. It is important to note that an analysis of the function 

defining the relation between single scale components is required to understand whether single scale 

sensitivity analysis can be used to reduce the dimensionality of the overall multiscale model input 

space. Such analysis for the presented examples was performed in [12]. 

 

Figure 3: Diagram of the CNN-based surrogate model 
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We propose to evaluate the response sensitivity of the computationally cheap single scale model f to 

estimate an upper bound of the sensitivity of the multiscale model output z (Figure 4). This approach 

can be highly computationally efficient; however, the method is not applicable to all problems.  In 

order to fix uncertain inputs according to the single scale model SA, it should be proved that the total 

sensitivity for an input xi remains small also for the output of the model g(x, xi). This cannot be assumed 

in general, and it depends on the form of the model function G.  

 

The first step of the proposed approach is to analyse the multiscale model function G. The next step is 

to estimate numerically the sensitivity indices of the output of the function f for all its inputs using a 

black box method, for instance using the Sobol global method. Then, if it is found that for some inputs 

the output sensitivity is low, it follows automatically that the sensitivity of the output of the overall 

multiscale model is low for these inputs. Hence, uncertainty can be estimated with these inputs being 

fixed without producing a large error in estimation of uncertainty. In the Appendix (section 4.2) we 

show several examples where the proposed method applies. 

2.3 Uncertainty Quantification Patterns 

Uncertainty Quantification Patterns (UQPs) are algorithmic specifications of UQ that are generic, 

extensible and widely applicable. The concept of UQPs was discussed extensively in deliverable D2.1. 

Our overall goal for the UQPs is to exploit the structure of a multiscale model in order to reduce the 

computational burden of performing UQ on these models. We identified a number of them in the 

proposal; see Figure 5. We can build a UQP from a combination of control structure UQPs and 

Figure 4: Scale separation map. The functions G(f,h) and h are the macro and micro models with 

inputs x and ξ, respectively. The function G(f(x), h(ξ)) defines the relation between the response of 

the micro model and the macro model parameters denoted by f. The final multiscale model output 

z = g(x, ξ) = G(f(x), h(ξ)) is produced by the macro model. 
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optimization UQPs. Broadly speaking, a control structure UQP takes advantage of the way in which the 

different submodels are connected to each other, e.g. cyclic vs acyclic models. An optimization UQP is 

a generally applicable method aimed at reducing the cost of the final UQP, for instance through 

subsampling or surrogate modelling. 

 

UQP1 is the basic UQP, which makes no assumptions on the control structure, and employs no 

optimization to any of the submodels. In essence, it propagates uncertainty from the inputs to the 

outputs, in a non-intrusive, black-box fashion. UQP2 is a control structure UQP, applied to acyclic 

multiscale models. Here, the uncertain output of one submodel becomes the input of the next model, 

but no information flows back from the latter to the former. Essentially, this is a semi-intrusive method 

where we apply UQP1 to the individual submodels. The Fusion application is testing this approach; see 

the Appendix (section 4.3) for more details. 

 

UQPs 3 and 4 deal with multiscale models with cyclic coupling; see also Table 1 in D2.1 (where UQP3 

with a single domain was labeled as UQP5). In [2] a combination of control structure and optimization 

UQPs is used for a cyclic multiscale model. The expensive micromodel is either subsampled (i.e., a 

reduced number of samples is taken) or replaced by a Gaussian process surrogate. In addition, UQP1 

is applied at the level of the macromodel to investigate the effect of the uncertain macroscopic input 

parameters. This approach is being tested by the In-Stent Restenosis application [13], as well as the 

Fusion application.  

 

We are developing new optimization UQPs, primarily for models with cyclic coupling, in the form of 

(application-agnostic) surrogate modelling methodologies presented in Section 2.2.1. As discussed 

there, by including memory dependence we also target situations where the macro and micro models 

Figure 5: A family of Uncertainty Quantification Patterns (UQPs). 
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have time scale overlap (see also [7] for a more technical discussion of this issue). This corresponds to 

the category UQP4-B in terms of Table 1 from D2.1. 

 

Due to the modular nature of our framework we can readily combine optimization UQPs with other 

developed UQPs. For instance, we can apply UQP1 to the macromodel using EasyVVUQ, while the 

micromodel is replaced with a stochastic surrogate. By building a library of control structure UQPs and 

optimization UQPs, we aim to enable the use of such combinations for a range of multiscale problems. 

 

2.4 Verification & Validation procedures 

With VECMA, we address Verification and Validation (V&V) patterns where verification is the 

correctness of a solution relative to a given model (computational or mathematical), whereas 

validation is correctness of that model relative to the real-world system it is intended to describe [15]. 

Our prime focus is on a representative range of such applications – from fusion and advanced 

materials through climate and migration, to explore suitable V&V patterns that certify quality in terms 

of: (i) high fidelity output; (ii) verified at syntactic, semantic and dynamic levels; and (iii) validated 

models and their coupled integrations, such that they may be relied upon to take important decisions 

in the domains of concern.  

 

Hoekstra et al. [16] posed an urgent question of V&V for multiscale models, as well as developing 

formal mathematical approaches appropriate to address the issue of error propagation in, and 

convergence of, multiscale models. However, there are a large variety of V&V methods due to the 

range of diversity in data types, subjects and applications. We identify the prominent V&V patterns 

which are most suitable for multiscale computing applications. We summarize them briefly below; a 

more extensive description can be found in the Appendix (section 4.4). 

 

• The Quantity of Interest pattern focuses on extracting a distribution of QoIs from the 

simulations. We apply a similarity measure (e.g. Wasserstein distance) to quantify the 

similarity between the QoI distributions from the simulation, and from the validation data.  

• Code Comparison of QoIs with the Stable Intermediate Forms is a pattern for monitoring 

iterative simulation development, evaluating each intermediate step. 

• The Level of Refinement pattern is a verification pattern focused on asymptotic behaviour of 

QoIs upon changing certain model parameters, e.g. increasing grid resolution. Another 
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example is the convergence of Sobol indices when increasing the polynomial order of a 

(polynomial-based) surrogate model.  

• Ensemble Output Validation employs a sample testing function to compare output from 

different model simulations, where each simulation has its own output directory. 

 

2.5 Implementation of UQPs and VVPs in VECMAtk 

We have chosen to implement UQPs and VVPs in the VECMA toolkit (VECMAtk, see also [18,19]) in two 

ways. The first method is that we take the concepts, and enhance our toolkit software (e.g., EasyVVUQ 

and MUSCLE3) to provide the functionalities required to incorporate specific UQPs/VVPs into 

application workflows. The second method is that we define an application-agnostic definition of the 

pattern in Python 3 code (which is used by most components in VECMAtk), and then allow tools and 

applications to use these generic definitions, allowing users and developers to embed the patterns into 

applications and specific supporting tools. 

 

As the project progresses, and also in response to the feedback from the VECMA project midterm 

review, we are attempting to establish these application-agnostic implementations of the patterns 

within VECMAtk. For the stochastic surrogates, a prototype toolkit is being developed, with the 

working name “EasySurrogate”. To ensure continuity across the VECMA toolkit, we have opted for a 

design similar to EasyVVUQ. As in EasyVVUQ, the overall UQP object is called a “Campaign”, and it is 

broken down in to several generic UQ Elements (UQEs). Thus far, we have identified the following 

UQEs that make up a surrogate campaign UQP: 

 

• Encoder: formally defined as a component that incorporates application-specific information 

in a generic definition of a UQ procedure. More specifically, this UQE contains procedures to 

e.g. load training data or create time-lagged training features required in Eq. (1). 

• Method: the specific surrogate method that will be employed. This is the analogue of the 

“Sampler" object in EasyVVUQ. 

• Analysis: several post-processing procedures meant to either verify the surrogate or validate 

the coupled surrogate – macroscopic model system. Examples include computing the error of 

the surrogate on the training data, or procedures which compute (statistical) properties of the 

coupled surrogate – macroscopic model system. The latter falls under VVP1 of Section 2.4. 
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This is an early-stage design of the toolkit, and it is likely that more UQEs will be identified later on. 

Finally, note that one major difference between EasySurrogate and EasyVVUQ is the lack of a black box 

assumption in the former, as the surrogate is meant to replace a part of the multiscale system.  

 

The development of the application-agnostic VVPs mention in Section 2.4 is also underway. These are 

described in more detail in the Appendix (section 4.4).  

 

2.6 Towards the exascale: scalable UQPs 

The scaling of tools in VECMAtk towards future exascale supercomputers has several aspects. An 

important factor is the software implementation of the algorithms and UQPs and its suitability for e.g. 

easy generation of large job counts and creation of container jobs. To support this, the QCG Pilot Job 

Manager is integrated into the VECMA toolkit. As already mentioned in D2.1, a pilot job manager 

enables users to create a single container job on a remote supercomputer, and subsequently schedule 

O(1000) jobs or more within that single job container. This creates a pathway to UQ applications that 

scale towards future exascale machines.  

 

The most straightforward problem involves UQP1 applied to a very expensive computational code, of 

which an example is given in the next subsection. Many of the implemented EasyVVUQ sampling 

techniques are subject to the curse of dimensionality, meaning that the required number of code 

evaluations increases exponentially with the number of uncertain parameters. Notwithstanding this, 

many of the more sophisticated “hybrid” UQPs contain a UQP1 component, and are as such candidates 

for a large ensemble run within a pilot job manager. For instance, UQP2 applies UQP1 to individual 

single-scale models, and by combining UQP4-B with UQP1 on the macro model we obtain a hybrid UQP 

with uncertainty on the macroscopic parameters. Another way in which a highly expensive UQP1 could 

tie into its more advanced counterparts is by generating a diverse database of high-resolution 

reference data, on which we can train or validate the various surrogate modelling techniques. 

 

Example: Bio-medicine 

Both speed and reliability are essential in order to accelerate the drug discovery process, as well as to 

offer real-time clinical decision support in personalised drug selection. To accelerate the calculations 

for a large number of drug compounds and/or protein variants, we have been using task farming for 

concurrent execution of multiple tasks on high performance computers. UQ, which in this application 

has been available for a considerable period of time in production mode, is handled by a stripped down 

version of EasyVVUQ; indeed, the architecture of EasyVVUQ is built on this particular application. The 
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job farming function on SuperMUC-NG, for example, enables running a number of independent 

parallel jobs with a single batch job. It is well aligned with the need to perform ensemble-based 

molecular dynamics studies. The job farming method is based on the light-weight data base server 

redis, which offers several desirable features like flexibility and extensibility. It is one of the most 

efficient ways to run multiple simulations in parallel. The job farming submits multiple jobs to the batch 

system like a single large job and is thus easier to schedule. This technique is particularly useful in our 

studies, as we need to perform ensembles of independent MD simulations simultaneously. In addition, 

we also use RADICAL-Cybertools [17] for flexible task-level parallelism; QCG-PJM is a now emerging 

alternative. This helps reduce the burden of coordination of the many tasks by providing well defined 

execution patterns, and is utilized by user-facing domain specific workflows such as the high-

throughput binding affinity calculator. In the elapsed time needed to perform one single simulation, 

we can run all the replicas within an ensemble. On SuperMUC-NG, the maximum number of nodes for 

a single submission is 6044 (the full production partition comprising 311,000 cores), which enables us 

to produce binding affinity predictions for of the order of 1200 compounds within a day or so. The 

ability to perform such calculations fast and reliably is now having an important impact on the use of 

such methods in areas such as drug discovery and clinical decision making. 

3 Conclusions 

The development of advanced multiscale VVUQ algorithms in VECMA is progressing well. For the 

advanced UQPs (UQP2-5) we have developed multiple new methods for surrogate modelling and 

sensitivity analysis, as reported in section 2.2. They are being implemented in the “EasySurrogate” 

toolkit and as such become part of the overall toolkit VECMAtk. The pilot-job manager integrated into 

VECMAtk contributes to scaling of the toolkit towards the exascale. Besides new advanced UQ 

functionality, formal procedures for V&V are developed and added to VECMAtk. In the final, third year 

of VECMA we will consolidate these newly developed algorithms, streamline their software 

implementation and integrate them further into the VECMA tookit. 
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4 Appendices 

4.1 CNN surrogate model and its application to UQ analysis of the ISR2D 

model 

4.1.1 Technical details of the CNN surrogate model 

As discussed in section 2.2.1.4, the CNN model consists of three parts, for shape encoding, nonlinear 

mapping and stress decoding. The shape encoding layers extract the features of the geometry to the 

shape code. A fully connected (FC) layer then maps the shape code together with the blood flow 

velocity to the stress code. The stress decoding part is responsible for a mapping from the stress code 

to wall shear stress. In this surrogate model, the geometry input was transformed from a binary map 

to a 2 × 𝑘  array which indicates the locations of upper and lower fluid-solid boundaries. The 

convolution layers then take the information from both boundaries into account and predict the shear 

stress on these boundaries. There are three convolution layers, a fully connected layer and three 

deconvolution layers deployed between the input layer and output layer. Each of them is followed by 

a rectifier linear unit (ReLU) as the activation function. Besides, the output of each convolution layer is 

concatenated to the corresponding deconvolution layer to help with the decoding process. 

The training data for the surrogate model comes from the runs of the ISR2D model. One run of ISR2D 

calls the Lattice Boltzmann solver of the blood flow model component 1440 times (once per hour of 

simulated time). This means that with only a few runs of the simulation, a considerable amount of flow 

data for training is already available. We trained the surrogate model with the data from four runs of 

ISR2D simulation, hence 5760 blood vessel geometries and wall shear stress distributions were used 

for training. The training optimization was based on the mean squared error loss function: 

𝐿(𝜏)𝑠𝑠) = 1/𝑛∑ JK𝜏)**
(&) − �̂�)**

(&) KJ/
&(#

%
  

where 𝑛 denotes the number of samples of the training set. The Adam optimizer was used to optimize 

the hyper-parameters in the model. A validation against a test dataset was done during the training 

process to prevent the model from overfitting. The epoch was set to 80 as the loss does not decrease 

significantly after that. The surrogate model was implemented in Keras [11]. 

4.1.2 Application to UQ analysis of the ISR2D model 

We applied the CNN surrogate model to a two-dimensional model of in-stent restenosis. This model 

simulates a repeated growth of cells inside a coronary artery due to the healing process from installing 

a stent to treat the initial stenosis. For a more detailed description of the application, we refer the 

reader to [8,9]. In Figure 6, we show results of the UQ analysis obtained by applying the CNN surrogate 
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model, as well as its corresponding speedup compared to the quasi Monte Carlo (qMC) method and 

to previous semi-intrusive UQ methods. The UQ estimates with the CNN surrogate model are very 

close to the qMC results and outperformed the results of most previous surrogate models except Data 

Driven (DD) I. The results with DD I are still slightly better which may be due to the large training dataset 

it used [9]. However the speedup obtained with DD I is much lower than with the CNN model, since 

the CNN model learns the latent pattern of the data, while DD I simply looks for similar cases among 

all the training data. Because of this, the prediction cost of CNN is significantly lower. 

 

 
Figure 6: (a) Mean and standard deviation of the ISR2D model output on the neointimal area with quasi-

Monte Carlo (qMC) and with the semi-intrusive (SI) method. (b) Comparison of the estimates of means and 

standard deviations of neointimal growth and restenosis ratio with qMC and SI.  (c): Speedup of SI 

compared to qMC. The details of the DD I, DD II and Phys surrogate models for SI can be found in [9]. 
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4.2 Two examples of SA-based dimension reduction 

4.2.1 Example 1: Reaction equation 

The first example is a reaction equation presented by an acyclic model with initial conditions provided 

by some function f(x) (see [12] for further details): 

 
where x and xi are uncertain model inputs. The sensitivity analysis of f yields: 

 
suggesting that the parameter x2 does not significantly affect the output of the function f. Therefore, 

the value of this parameter can be equated to its mean when estimating uncertainty of the overall 

model response z. 

Figure 7 (a) illustrates a satisfactory match between the mean values and standard deviations obtained 

by sampling the results varying all the uncertain inputs and keeping the input x2 equal to its mean 

Figure 7: (a) Comparison of the estimated mean and standard deviation of the model response z(t) 

using the original sample and the sample with the unimportant parameter x2 equal to its mean value 

(reduced); (b) and (d) Comparison of the probability density functions and the cumulative 

distribution functions at the final simulation time Tend =100; (c) Relative error in the estimated mean 

and standard deviation using the samples with the reduced number of uncertain input. 
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value. Figure 7 (c) shows that the relative error in the standard deviation does not exceed 3.5% at any 

simulation time. Moreover, the resulting p-value of Levene's test is about 0.84. Therefore, the null 

hypothesis that the samples are obtained from distributions with equal variances cannot be rejected. 

Figure 7 (b) and (d) show the probability density functions (PDFs) and the cumulative distribution 

functions (CDFs) of the uncertain model output z at the final simulation time obtained using these two 

samples. There is a good match in the PDFs and CDFs with Kolmogorov–Smirnov (K-S) two-sample test 

shows the K-S distance of 3.6 · 10-4 and p-value larger than 0.5, therefore, the hypothesis that the two 

samples are drawn from the same distributions cannot be rejected. 

4.2.2 Example 2: Standard Ornstein-Uhlenbeck process 

The second example, also from [12], is an a-cyclic multiscale model whose micro scale dynamics do 

not depend on the macro scale response. Let us consider the following system (Figure 8 (a)): 

 

where z simulates the slow processes with z(t=0) = 1, v is the fast process with v(t=0)=1,  𝜖=10-2, 𝑊0̇  is 

a white noise with unit variance. The fast dynamics is the standard Ornstein-Uhlenbeck process.  

Sensitivity analysis of the function f(x) yields 

 
At any simulation time, the inputs x2 and x3 do not influence significantly the output of the function f. 

Therefore, they can be equated to their mean values without a substantial loss of accuracy of the 

uncertainty estimate. 

The uncertainty estimation results of z are presented in Figure 8(b). As it is proven analytically, the 

estimates obtained by sampling the model results with uncertain parameters x2 and x3 equal to their 

mean values are close to those resulting from samples where all the uncertain inputs vary. At any 

simulation time, the relative error between these estimates of the standard deviation does not exceed 

1.1% (Figure 8 (d)). Additionally, Levene's test shows a p-value of 0.66, therefore, we cannot reject the 

hypothesis that the two samples are drawn from distributions with the same variance. 
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The PDFs and CDFs for the model result at the final point in time (Tend) obtained from these two samples 

are shown in Figure 8 (c) and (e). There is a good match of the PDFs and CDFs obtained from these two 

samples, and K-S test produces the distance of 0.01 and p-value of 0.47, therefore, the hypothesis that 

the two samples are drawn from the same distributions cannot be rejected. 

 

Figure 8: (a) Standard Ornstein-Uhlenbeck process; (b) Comparison of UQ result using the original sample 

and the sample obtained with values of the unimportant parameters x2 and x3 equal to their mean (reduced); 

(c) and (e) Comparison of the PDF and CDF at the final time step; (d) Relative error in the estimation of the 

mean and standard deviation 
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4.3 UQP2 for the fusion application 

For the fusion application, the pattern UQP2 is being tested (as mentioned in section 2.3). Currently, 

the workflow for this application combines three main models, as shown in Error! Reference source 

not found.: an equilibrium code that describes the plasma geometry, a turbulence code that models 

the heat fluxes (which are then converted into transport coefficient), and a transport solver that 

evolves temperature profiles at the macro time scale. 

 
The DeCorr boxes act as a bridge between two UQP1 boxes. At this stage we can parametrize the UQP1 

outputs using for example splines, and then we transform correlated random variables of non-normal 

distribution using the Rosenblatt transformation. For example, let us treat the boundary conditions 

defining the electron temperature Te at the plasma edge as the uncertain parameters.  As Figure 10 

(A) shows, the Transport code output Te contains uncertainties at the edge. Before using it for the next 

box (the Equilibrium code), we approximate the Te mean by a cubic spline and we only use the two 

last control points (CP1 and CP2) of the approximated curve instead of all Te points. Figure 10 (B) shows 

the output distribution at those control points. Finally, we run the second code using less parameters. 

Figure 10 (C) shows the uncertainties in the pressure quantity, an output of the Equilibrium code. 

Figure 9: The UQP2 pattern applied to the fusion model workflow. 

A

 

B 

 

C 

 

 

Figure 10: The Electron temperature profile Te, splines control points (A) and pressure profile (C)  are 

shown with respect to the normalized toroidal flux coordinate ρtor. The probability densities in the two last 

control points are plotted in (B). 
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4.4 V&V patterns 

4.4.1 Pattern: Quantity of Interest 

Quantity of Interest (QoI) focuses on extracting a distribution of QoIs from the simulations runs (using 

the Decoder and Analysis). We apply the similarity measure to quantify the similarity between the QoI 

distributions from the simulation, and from the validation data. The main input parameters are: 

• Decoder, to translate raw simulation output to computable data (see EasyVVUQ); 

• Analysis, to extract the QoI distributions from the computable data (see EasyVVUQ); 

• Mathematical definition of the similarity measure (e.g., Wasserstein metric, Hellinger distance, 

Kullback-Leibler divergence or distance between means). 

 

The pseudocode below describes the QoI pattern as follows: 

def extract_and_compare_qoi_dist(decode, decode_validation_data, analyse, similarity_measure, 

validation_qoi_source, output_dir): 

         qoi_distribution_validation = decode_validation_data(validation_qoi_source) 

            output_data = decode(output_dir) 

            qoi_distribution_simulation = analyse(output_data) 

            return similarity_measure(qoi_distribution_simulation, qoi_distribution_validation) 

 

In turn, we obtain a notion of the distance between the distribution, for instance a single number per 

time point, or a combination of distance between means and entropy. 

4.4.2 Pattern: Stable Intermediate Forms 

Stable Intermediate Forms (SIF) is a general, gradual, observable and risk-averse pattern for making 

progress in simulation development iteratively and limiting the effects of failure. When undertaking a 

series of changes to move from one step to another, each intermediate step is evaluated and once it 

is considered stable it will be used as the basis for further changes. This helps in gaining confidence in 

the iterative and incremental model development rather than carrying out sudden changes with a 

single large stride, making it too complex and possibly deviating from the development pipeline. 

4.4.3 Pattern: Level of Refinement 

Level of Refinement (LoR) is a general verification pattern that seeks asymptotic behaviour in QoI upon 

increasing the resolution of certain model parameters. It is important to note that the same quantity 

of interest is computed at every given resolution. One might for instance perform a grid refinement 

study in Computational Fluids Dynamics, where the same output quantity is computed on grids of 
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increasing spatial resolution. The point from which the simulation outcomes no longer change 

significantly marks the largest spatial resolution for which the results are independent of the 

computational grid. Another example concerns the convergence of Sobol sensitivity indices 

(demonstrated below), computed by replacing the expensive simulation code with a cheap 

polynomial-based surrogate model. Here, the polynomial order of the surrogate should be high 

enough to ensure converged sensitivity estimates. 

We require the following inputs for the LoR pattern: 

• results_dirs: list of result dirs, one directory for each resolution and each one containing the same 

QoIs stored to disk.  

• sample_load_function: a function which loads the QoIs from each subdirectory of the results_dirs. 

• aggregation_function: function to combine all results. 

• **kwargs: custom parameters. The 'items' parameter must be used to give explicit ordering of the 

various subdirectories, indicating the order of the refinement. 

 

In turn, the pattern returns the aggregated validation outcome, which is inspected for convergence 

with the level of refinement. We demonstrate the LoR VVP by computing the first-order Sobol indices 

of the so-called Sobol g-function in two dimensions, which is given by: 

 

𝑔(𝑥#, 𝑥%) = R
|4𝑥& − 2| + 𝑎&

1 + 𝑎&&(#,% 	

 

  

To execute the LoR VVP, we run the following two commands (full code available at 

https://github.com/wedeling/FabUQCampaign/blob/master/examples/VVP_test/test_sobol.py): 

 
 from vvp import ensemble_vvp 

 ensemble_vvp('/tmp/sobols', load_sobols, check_convergence, items=items, 

  poly_orders=poly_orders) 

 

Here, `load sobols’ just loads the Sobol indices from a .CSV file in each directory, and 

`check_convergence` receives a list with all Sobol indices and outputs the following: 

 

Polynomial order = 2 
Sobol x1 = 0.722 , exact = 0.750 , error = 0.028 
Sobol x2 = 0.154 , exact = 0.188 , error = 0.033 
========================================================= 
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Polynomial order = 3 
Sobol x1 = 0.758 , exact = 0.750 , error = 0.008 
Sobol x2 = 0.197 , exact = 0.188 , error = 0.010 
========================================================= 
Polynomial order = 4 
Sobol x1 = 0.739 , exact = 0.750 , error = 0.011 
Sobol x2 = 0.175 , exact = 0.188 , error = 0.013 
========================================================= 
Polynomial order = 5 
Sobol x1 = 0.754 , exact = 0.750 , error = 0.004 
Sobol x2 = 0.192 , exact = 0.188 , error = 0.005 
========================================================= 
Polynomial order = 6 
Sobol x1 = 0.744 , exact = 0.750 , error = 0.006 
Sobol x2 = 0.181 , exact = 0.188 , error = 0.007 
========================================================= 
Polynomial order = 7 
Sobol x1 = 0.752 , exact = 0.750 , error = 0.002 
Sobol x2 = 0.190 , exact = 0.188 , error = 0.003 
========================================================= 
Polynomial order = 8 
Sobol x1 = 0.747 , exact = 0.750 , error = 0.003 
Sobol x2 = 0.183 , exact = 0.188 , error = 0.004 
========================================================= 
Polynomial order = 9 
Sobol x1 = 0.751 , exact = 0.750 , error = 0.001 
Sobol x2 = 0.189 , exact = 0.188 , error = 0.002 
========================================================= 
 

In this particular example there is also a validation element, since we can analytically compute the 

exact first-order Sobol indices from the g-function (0.75 and 0.188). However, even without this 

information it would be clear that from a polynomial order of 5 and onward the results do not change 

much 

4.4.4 Pattern: Ensemble Output Validation 

Ensemble Output Validation (EOV) will operate a sample testing function on each directory, and print 

the outputs to screen, and use an aggregation function to combine all outputs into a compound metric. 

There is no explicit argument to indicate where the validation data resides (currently assumed to be 

packaged with the simulation output and known by the function). The validation function should return 

a set of metrics using the following code: 
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def	ensemble_vvp(results_dirs,	sample_testing_function,	aggregation_function,	**kwargs):	

    #if	a	single	result_dir	is	specified,	still	add	it	to	a	list 
    if	type(results_dirs)	==	str: 
        tmp	=	[];	tmp.append(results_dirs);	results_dirs	=	tmp 
         
    for	results_dir	in	results_dirs:				 

 

        scores	=	[] 
         
        #use	user-specified	sample	directories	if	specified, 
        #otherwise	look	for	uq	results	in	all	directories	in	results_dir 
        if	'items'	in	kwargs: 
            items	=	kwargs['items'] 
        else: 
            items	=	os.listdir("{}".format(results_dir)) 
         
        for	item	in	items: 
            if	os.path.isdir(os.path.join(results_dir,	item)): 
                print(os.path.join(results_dir,	item)) 
                scores.append(sample_testing_function(os.path.join(results_dir,item),	**kwargs)) 
     
        aggregation_function(scores,	**kwargs) 

 

The code is available at https://github.com/djgroen/FabSim3/blob/master/VVP/vvp.py 
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