
 VECMA - 800925

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 800925.

D3.4 Full release of the entire VECMA toolkit

Due Date 14 June 2021
Delivery 07 June 2021

Submission of updated
version

N/A

Lead Partner UBRU
Dissemination Level Public

Status Final
Approved Executive Board

Version V1.2

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 2 of 20

DOCUMENT INFO

Date and
version number

Author Comments

27.05.2021 v1.0 Diana Suleimenova First Draft

 Derek Groen
 Hamid Arabnejad
28.05.2021 v1.0 Xuanye Gu Sent for internal review
4.06.2021 v1.1 Derek Groen Revised after receiving internal reviewers’ feedbacks
 Diana Suleimenova
5.06.2021 v1.1 Peter Coveney Sent final comments
7.06.2021 v1.2 Diana Suleimenova Finalised report

CONTRIBUTORS

• Diana Suleimenova – Main Author, Editor
• Derek Groen – Author
• Hamid Arabnejad – Author
• Bartosz Bosak – Reviewer
• Wouter Edeling – Reviewer
• Vytautas Jancauskas – Reviewer
• Peter Coveney – Approver, Editor

Disclaimer

This document’s contents are not intended to replace consultation of any applicable legal sources or
the necessary advice of a legal expert, where appropriate. All information in this document is provided
“as is” and no guarantee or warranty is given that the information is fit for any particular purpose. The
user, therefore, uses the information at its sole risk and liability. For the avoidance of all doubts, the
European Commission has no liability in respect of this document, which is merely representing the
authors’ view.

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 3 of 20

Table of Contents
Executive Summary 3

Introduction 4

The final VECMA toolkit release 4

User feedback elicitation 5

Changes made based on user feedback 8
VECMAtk Installation process 8
VECMAtk Components 9

Conclusions 12

References 13

Appendix A: Highlights from survey results 13

1 Executive Summary

This deliverable is for Work Package 3, listed in the 800925_Annex 1- Description of the action (Part A)

file. As this is a software deliverable, its contents are available online rather than in this document.

However, in this written document we summarize the user review feedback we received and how we

incorporated it in the final release.

We conducted a total of 12 user surveys, and obtained a total of 107 in-depth responses over the

course of the project. The feedback we obtained was constructive in all cases, and frequently led us to

resolve critical issues in the toolkit. Additionally, we believe the frequent and in-depth interaction with

users have contributed to the relatively high user uptake of the tools compared to our expectations,

which was already manifest during the stage where the software was only available in preliminary

form.

A recurring theme in the user feedback was the ease of deployment and the accessibility of good

documentation, and we have made considerable updates in both areas throughout this project. In

addition, we found that users across diverse domains use our toolkit, believing it has clear added value

in terms of VVUQ, and that many users indeed use the VECMA toolkit (VECMAtk) at scale, with the

support of supercomputing resources.

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 4 of 20

The VECMA toolkit Month 36 release is available at: https://www.vecma-toolkit.eu/.

2 Introduction

This deliverable consists of four parts. In Section 3 we briefly describe the M36 VECMAtk release. In

Section 4 we present how we gathered user feedback over the lifetime of the project, and in Section 5

we describe how we incorporated that feedback in our development. We then share our main findings

and insights in the concluding Section 6.

3 The final VECMA toolkit release

Prior to this deliverable, the VECMA toolkit has had two major releases (M12 and M24), which are

reported in D3.2 and D3.3. In addition, we have released incremental updates in M6, M9, M15, M18,

M21, M27, M30 and M33.

As of M36, the toolkit consists of the following components:

- EasyVVUQ

- EasySurrogate (introduced in M30)

- FabSim3

- QCG-PilotJob

- MUSCLE3 (developed in collaboration with the Dutch e-Science Center)

- QCG-Client

- QCG-Now

Compared to the M33 and M24 releases, one component has been removed, namely the EasyVVUQ-

QCGPJ Integration API, or EQI. This component is no longer necessary as the M36 release now features

a direct integration between QCG-PilotJob and EasyVVUQ.

Full documentation of the toolkit and the components is beyond the scope of this written deliverable,

which is oriented towards reporting user feedback. However, all the necessary information can be

found at https://www.vecma-toolkit.eu/.

Although M36 is labelled as the “final” toolkit release, we will be incorporating further improvements

to the software and documentation up to the now extended end of the project (M42). As part of those

activities, we will schedule an additional updated release in M42.

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 5 of 20

4 User feedback elicitation

Prior to the start of VECMA, it was not completely clear in what way we would collect feedback from

the users of the toolkit. However, we did have working software from the first month of the project,

and given our preference for evolutionary prototyping, we realized that it was crucial to obtain user

feedback early on.

Figure 1: Diagram showcasing the evolutionary prototyping approach in the original VECMA proposal.

Here, application-specific fast-track work was intended to be done in Year 1, in the process informing

deep track toolkit development that would mainly come to fruition in Years 2 and 3.

Early on in the project, the toolkit adoption was limited (most users did manual UQ on their

applications), and we chose to solicit user input using a Google Forms survey. Our first user survey in

M3 solicited only 3 responses due to the small userbase, but was otherwise successful in soliciting user

feedback (See Appendix A). Based on this, we then decided to do an internal release every 3 months,

and have that accompanied with a so-called Alpha User survey.

Here, alpha users were considered persons that were willing to test out the VECMA toolkit and, where

relevant, try to apply specific routines to their own research applications. The response rates were

above 50% during the first year, but started to tail off after M12 as the user base grew further (~+1

new alpha user per month). The main (verbally provided) reason given by the users was the repetitive

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 6 of 20

nature and length of the questionnaires, and the fact that many of them actually didn’t reinstall

components every 3 months, so they felt their feedback was not that relevant.

In M18 we experimented with a different approach, splitting the alpha users into Testing users and

Research users, making a separate questionnaire for each of them. Though initially successful with 11

responses, the response rate quickly dropped again after M21, forcing us to rethink our approach once

more.

In M27 we therefore developed the last, shorter, consolidated feedback form. This only led to a mild

increase in response rate as we realized that the user base clearly was subject to survey exhaustion by

this time.

In the table below we summarize the number of responses from each of these regular surveys, and a

brief highlight.

Month # of responses comments

3 3 Covered only FabSim3, main response was about lack of clarity about
the tool’s purpose and lack of documentation.

6 8 (from
recollection)

Results lost due to accidental overwrite when developing the M9
survey.

9 6 Included also QCG-Client and EasyVVUQ. Main response was to have
more documentation for QCG and to have more examples for
EasyVVUQ. Also, strong suggestions (expressed during a meeting, not in
the survey) to create Docker / Singularity versions for portability.

12 10 Included also QCG-PilotJob and QCG-Now. Main response was low
actual uptake of containerized versions (1 out of 10 installed in this
way). Clear criticism on the FabSim3 plugin installation procedure,
which involved using `git clone`. M12 feedback was given prior to the
official M12 release.

15 6 Included also MUSCLE3. Main response was again requests for better
documentation, and lack of uptake of MUSCLE3 and QCG-Now (at the
time).

18 7 (research) +
4 (testing)

Separate research and testing surveys. Main response was a request to
add adaptive sampling and to facilitate more pip-based installation
routines.

21 10 (research) +
5 (testing)

Clear evidence of uptake at scale. Single survey with most valuable
responses in the project. Increase in uptake of MUSCLE3. Reasonably
short installation duration times.

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 7 of 20

24 2 (research) +
1 (testing)

Clear evidence of survey exhaustion. Results contained little directly
useful information.

27 6 Shortened form, which also included EasySurrogate. Main response was
on installation issues with QCG-PilotJob, improved documentation for
EasyVVUQ, and evidence of research uptake for FabSim3.

After M27 we realized that the periodic survey was losing momentum, and instead opted to do a user

survey after each VECMA Hackathon that we organised. Please see the table below for a summary of

those:

Month # of
participants

of
responses

comments

31 37 19 Clear evidence of HPC uptake.

34 18 12 Main response was that EasyVVUQ had many
inconsistencies, causing documentation to be outdated and
examples to be no longer working.

35 15 8 Main response was once more a push for better
documentation.

Throughout these three events, approximately 50-70% of the participants filled in the survey, and

indeed the drop in responses largely correlates with the drop in participation, as users got a little

saturated with the frequency of the Hackathons. We expected this in advance, but nevertheless

pushed for a M35 Hackathon because it would give us a clear sense of what to prioritize for this final

release.

Though the main result highlights are provided here, either in the table or in the Appendix, there is

one graph worth adding here. We asked users how many cores they used with their VECMAtk

application in Month 31, which led to the following distribution:

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 8 of 20

Figure 2. The number of cores used by users for their application with VECMAtk components.

In general, we find that most VECMAtk users operate in the so-called long tail of HPC, but that there

are a significant number of users that run applications across multiple nodes. This is also evidenced by

the variety of articles that have been published reporting work at that scale, and that have relied on

VECMAtk.

We have used the feedback that we received over all these surveys to guide the development process.

In many cases this led to immediate improvements, although we did find that issues around

deployment and documentation tend to recur whenever a major update to particular components had

been made. In the next section we will reflect on this in more detail.

5 Changes made based on user feedback

Here we describe the main changes that we have made to the VECMA toolkit, based on user feedback,

and reflect on the effectiveness of these changes.

VECMAtk Installation process

The initial public release of VECMAtk in M9 (M6 and M3 were not public yet) included three

components, which were FabSim3, EasyVVUQ and QCG-Client. Over time, we added another five

components to the toolkit, namely EasySurrogate, MUSCLE3, QCG-PilotJob, QCG-Now and EQI, the

latter of which has since been removed again [1]. Originally, the installation of these components was

manual and independent from each other which took time and had various dependency issues. In

response to this, we collected users’ installation preferences, which included manual, docker or

singularity, master build script, pip3 install vecmatk or cloning the VECMA repository with everything.

Installation preferences differed at each survey iteration, where some users preferred manual while

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 9 of 20

others favoured pip3, docker or singularity. However, over time we found there was an overall

preference for pip3 installation, once all alternatives were available.

We also received requests from users for an integrated or one-line installation of components. Thus,

we implemented a wholesale VECMAtk installation script that contains all components and downloads

them at once in the form of a Python VirtualEnv. The documentation of the installation process can be

found on the VECMAtk Github repository1. This method is provided in addition to the individual

installations of the VECMAtk components, which are available as well. To assess the installation time,

we asked users to indicate how much time they spent installing software. Over time, we significantly

improved and currently it is between 10-30 minutes (on average) for each component (last tested in

M27, see Appendix).

VECMAtk Components

In this section, we provide highlights of our progressive improvements and modifications in the

VECMAtk components based on users’ feedback and remarks.

FabSim3 is a Python-based automation toolkit for scientific simulation and data processing workflows,

which has been substantially transformed within the VECMA project. Based on the M3 feedback, we

improved the installation process and documentation. This led to favourable comments in the M9

survey, such as “Good documentation makes FabSim3 quite easy to use. Now I'm waiting to use it with

real applications to have more experience with it.”. During the M12 survey and the hackathons in that

period we received criticism on how plugins worked and were installed. Because of that, we

implemented a new plugin architecture. We had already introduced a FabDummy plugin that is an

example application providing introduction to the FabSim3 functionalities and capabilities, but based

on this feedback we also created one-line commands to install plugins using FabSim3, instead of doing

“git clone” manually. Later on, we also introduced the ability to make plugins dependent on each other,

and to distribute custom (plugin) functionalities across multiple imported files. In addition to the

changes described in D3.22 and D3.33, we also strengthened documentation in response to the recent

surveys, redoing the readthedocs site and adding more tutorials for users as well as for plugin

developers. We also received verbal feedback that the inferior pilot job scalability when using FabSim3

1 https://github.com/vecma-project/VECMAtk
2 https://www.vecma.eu/wp-content/uploads/2019/10/VECMA_D3.2_Fast-Track-Release-Toolkit_UBRU_V1.0-
20190614.pdf
3 https://www.vecma.eu/wp-content/uploads/2020/09/VECMA_D3.3_Preliminary-deep-track-release-of-the-
VECMA-toolkit_UBRU_v1.1_20200612.pdf

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 10 of 20

was deterring some users, so we introduced a new job submission workflow which reduced the

elapsed submission time per simulation instance from seconds to milliseconds.

EasyVVUQ is a Python library designed to facilitate verification, validation and uncertainty

quantification (VVUQ) for a wide variety of simulations. According to our questionnaires, EasyVVUQ is

the most predominantly used component, and has found higher than expected uptake in various

domains ranging from biomedicine, advanced materials, urban air pollution to e.g. fusion energy. To

provide support to each of these domains, EasyVVUQ developers improved the component by

implementing new functionalities in the framework, providing several sampler methods and

integrating EasyVVUQ with other VECMAtk components, such as QCG-PilotJob and EasySurrogate.

These improvements are driven by aspirations of developers and application users, as well as

suggestions and requests of external users. We state this because responses from users mostly

requested new implementations, such as parameter fitting and optimization, and did not have any bug

issues or problems when using EasyVVUQ. However, the great demand for additional features took its

toll in Year 3, and led to tutorials and documentation to become outdated as a result. Consequently,

we have chosen to primarily focus on hardening the software and updating / fixing / improving the

documentation for this release.

QCG tools consist of QCG-Client, QCG-PilotJob and QCG-Now, which aim to provide efficient and

reliable execution of a large number of computational jobs on the HPC machines. The main distinction

between them is that QCG-Client is a command-line interface, QCG-PilotJob is a lightweight

implementation of the Pilot Job mechanism and QCG-Now is a portable desktop program. Early on,

several users complained about unclear documentation, which was subsequently improved. In

addition, QCG-PilotJob found very high uptake among VECMA users, whereas QCG-Client and QCG-

Now did not have such widespread use. As a result, the development resources in the project have

been gradually diverted towards supporting and improving QCG-PilotJob, with lesser emphasis on the

two other tools. Moreover, the VECMA developers simplified the usage of EasyVVUQ with a QCG-

PilotJob engine that aimed for efficient and parallel execution of demanding EasyVVUQ scenarios on

HPC resources. The integration of EasyVVUQ and QCG-PilotJob, namely EQI, has reached an

intermediate stage in its development. As noted above, it has been excluded from the M36 release as

EasyVVUQ has now been directly integrated with QCG-PilotJob.

There were initially no major concerns about the QCG tools from our users. However, some users

suggested that they struggled to gain access to these tools as a new user and found instructions

ambiguous while others battled with the execution of submitted jobs as they were pending and taking

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 11 of 20

time, which in their experience was inconvenient. Many of these issues were outside of the control of

the developers, but they did make significant advances with QCG-PilotJob in terms of performance,

stability and documentation4, which was done to directly address verbally raised concerns amongst

HPC users of non-PSNC supercomputers such as SuperMUC-NG, ARCHER2 and Cartesius.

MUSCLE3 is the third incarnation of the Multiscale Coupling Library and Environment, which aims to

easily create coupled multiscale simulations and then enable efficient UQ analysis using advanced

semi-intrusive algorithms. It was initially released with solid documentation, but with little testing on

HPC resources, leading to initial feedback to improve the deployment there. The MUSCLE developers

have since improved its compatibility on several operating systems, and made the documentation

more thorough. Moreover, users suggested that the divisions in the tutorials provide a clear picture of

the component. There were also requests to implement UQ features for multiscale workflows that

developers took into account for M36. In addition, the recent Hackathon responses inform that users

would like to see the integration of MUSCLE3 with EasyVVUQ and MUSCLE3 with QCG-PilotJob for data

interchange and coupling campaigns (the latter is underway). Because MUSCLE3 is externally

developed within the Netherlands e-Science Center, not all of these concerns can be immediately

addressed. However, they have been noted as development priorities for the tool, and we hope these

improvements will make their way into the M42 release.

The documentation, tutorials and examples of the VECMAtk components faced iterative and

continuous improvements (and sometimes regressions) as we added and modified components with

new functionalities and features, integrations and applications. Hence, we received responses that

indicated outdated documentation or tutorials for some of the toolkit components and required an

overall sequential order to follow the application of components easily. We addressed these remarks

after every feedback round and still continue to improve and provide up to date instructions to

application and external users. To produce descriptive, comprehensive and consistent documentation,

tutorials and examples, we divided them into static, interactive and video tutorials, which are

described in D3.55. In turn, it allowed us to target different types of users from various domains. We

will also provide additional in-source documentation in the M36 release to interpret functions and

avoid plain code fragments. In addition, users suggested to include more tutorials with real

applications, which exist for various domain applications [2]. However, users might not have been

aware about these application tutorials as they are scattered across repositories. We aim to direct

4 https://qcg-pilotjob.readthedocs.io
5 https://www.vecma.eu/wp-content/uploads/2020/09/VECMA_D3.5_Documentation-and-
Tutorials_UBRU_v1.2_20200814.pdf

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 12 of 20

users to the comprehensive guide of all application examples, which can be found at

https://www.vecma-toolkit.eu/tutorials/, in the final release.

6 Conclusions

In this deliverable we summarized the VECMAtk release briefly, and more extensively described how

we solicited user feedback, and used that feedback to improve the toolkit.

Getting consistent response rates is not easy, and we had to reinvent the feedback process multiple

times in order to maintain a reasonable level of user feedback. But we found that this adaptation effort

was worth it, as the feedback we obtained was crucial and helpful in numerous cases.

There were a few examples where user feedback was not directly productive: most notably the strong

user preference for containerization in Year 1 was followed up with a near non-existent uptake of the

containerized version in Year 2. Likewise, we found several examples on tool documentation where

user feedback was initially addressed, only for the solution to degrade again over time to the point

that users again provided the same criticisms.

Developing a production-level toolkit in the context of a research project was always going to be a

challenging endeavour as the resources in such projects are allocated towards research and as such

user experience suffers. It is also because we have neither the necessary skills, nor the personnel nor

the incentives, but the high uptake of the toolkit certainly was a mixed blessing in that regard. While

we very much welcome the major uptake of the toolkit, and the solid number of research publications

that have cited it, it also forced us to redirect vast amounts of effort from core development to user

support. As an example, EasyVVUQ, originally a UCL-led tool, found such booming uptake that it

subsequently received major development effort from CWI (Wouter Edeling), LRZ (Vytautas

Jancauskas), IPP (Jalal Lakhlili) and in the most recent times BUL (Hamid Arabnejad). Likewise,

development and support efforts at PSNC were heavily concentrated on QCG-PilotJob to reflect the

high uptake there. In terms of technical progress, all this switching of roles was far from ideal and led

to delays in places, but the upside is that we now have a group of individuals that each have

development-level experience with multiple components in VECMAtk. That in-depth expertise across

the different tools, and across different people, is likely to help us to sustain the toolkit expertise after

VECMA has officially concluded.

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 13 of 20

7 References

[1] Groen D., et al. 2021 VECMAtk: A scalable verification, validation and uncertainty quantification

toolkit for scientific simulations. Phil. Trans. R. Soc. A.3792020022120200221.

DOI: http://doi.org/10.1098/rsta.2020.0221

[2] Suleimenova D., et al. (in press) Tutorial applications for verification, validation and uncertainty

quantification using VECMA toolkit. Journal of Computational Science.

8 Appendix A: Highlights from survey results

Month 3 (covering only FabSim, FabMD and FabDummy):

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 14 of 20

Month 9 (also covering EasyVVUQ and QCG-Client)

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 15 of 20

Month 12 (also covering QCG-PJ and QCG-Now)

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 16 of 20

Month 15 (also including MUSCLE3)

Month 18

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 17 of 20

Month 21

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 18 of 20

Month 27 (with EasySurrogate now included)

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 19 of 20

Month 31

VECMA - 800925

[D3.4 Full release of the entire VECMA toolkit] Page 20 of 20

Month 34

Month 35

