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1 Executive Summary 

This deliverable, D4.4 (“Report on Application Use Cases”) covers work on the Application Use Cases 

(Task 4.5) in section 2.1 and the work on applying the VVUQ toolkit to external applications (Task 4.6) 

in section 2.2.  It builds on previous WP4 deliverables and relies on references to those deliverables. 

 

The different VECMA applications have explored a range of Uncertainty Quantification Patterns 

(UQPs) and Verification and Validation Patterns (VVPs) and demonstrated that these patterns apply 

across a large variety of fields.  Monte-Carlo, Polynomial Chaos Expansion (PCE) and Stochastic 

Collocation (SC) have all been used to analyse the uncertainty in the Quantities of Interest (QoIs) 

driven by the uncertainties in the inputs or the inherent uncertainty of the process.  Of particular 

interest is the use of adaptive methods which allows for UQ analysis to be applied for a much larger 

set of varying parameters. 

 

Various components of the VECMA VVUQ toolkit have been successfully used by external partners on 

their applications.  Different partners have used FabSim3, EasyVVUQ and QCG-PJ to apply UQ to their 

applications.  The Hackathons have proved to be particularly useful in this context. 

 

2 VECMA tools usage by internal and external application 

Section 2.1 covers work on the Application Use Cases (Task 4.5, led by UCL), while section 2.2 covers 

work on applying the VVUQ toolkit to external applications (Task 4.6, led by UVA). 

2.1 VECMA exemplar applications 

The first WP4 deliverable, D4.1: Report on Application Software Readiness identified four applications 

(fusion, materials, Binding-Affinity-Calculator and In-Stent-Restenosis) as being on the fast-track, and 

four (Continuum Blood Flow, Cell-based Blood Flow, Climate and Multiscale Migration Prediction) as 

being on the deep track. 

 

The second, D4.2: Report on the implementation of nonintrusive VVUQ techniques discussed the use 

of non-intrusive VVUQ techniques for fusion applications using Polynomial Chaos; In-stent restenosis 

(2D) application using Quasi-Monte Carlo; climate application and multiscale migration prediction 

application using Stochastic Collocation; materials application and binding affinity calculator 

application using parameter sweeps and ensemble bootstrapping. 

 

The third, D4.3: Report on the implementation of nonintrusive and intrusive VVUQ techniques 

provided details about CovidSim; FACS: Flu and Coronavirus Simulator; Dutch-Covid Model; Multiscale 

Migration Prediction; Climate; Fusion; In-stent restenosis 3D (ISR3D); Materials; and Binding Affinity 

Calculator (BAC) with more details in the appendix for many of the applications. 

 

This section provides more details for the applications, building on the information already provided 

in these earlier deliverables and provides the outcome performed in Task 4.5: Application Use Cases 

whose description is:  
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Demonstrate the applicability of the VECMA tools implemented in Tasks 4.2 and 4.3 to real use 

cases drawn from our diverse applications portfolio, through evaluating the effectiveness of 

the designed UQ and V&V primitives in that context. All application domains will provide such 

a real-case evaluation, and at least two applications will be sufficiently advanced by M30 to 

allow for in-depth analysis of performance and the extent to which the VVUQ toolkit has aided 

these applications in becoming "actionable”. 

2.1.1 In-Stent Restenosis 2D and 3D (ISR2D & ISR3D) 

In-Stent Restenosis 2D/3D are multiscale computational models to simulate post-stenting neointima 

growth in the blood vessel. For the fast-track application ISR2D, both non-intrusive (NI) and semi-

intrusive (SI) UQ methods have been applied (reported in D4.2). Multiple UQPs have been 

implemented including: UQP1, UQP1-B, UQP3-B.  

 

For the non-intrusive UQ method, the entire model was regarded as a black-box and the uncertainty 

propagation was investigated with quasi-Monte Carlo (qMC) method with Sobol sequence. In the 

UQP1-B, a surrogate model based on Gaussian process regression was developed and subsequently 

replaced the original ISR2D in the quasi-Monte Carlo simulations. In the semi-intrusive uncertainty 

quantification (UQP3-B), the most expensive submodel, blood flow solver, is replaced with a surrogate 

model. We developed multiple surrogate models for the blood flow simulation, including a physics-

simplified method (Phys), nearest neighbour method (DD I & II) and convolutional neural network 

(CNN).  See [Nikishova_2019 and Ye_2021] for details on surrogates. The surrogate models then 

replaced the blood flow submodel in the quasi-Monte Carlo simulations.  

 

A summary of uncertainty estimation of the quantities of interest by different methods is presented in 

Table 1. The NI estimations have the smallest error in the estimation of the mean and the restenosis 

ratio. The SI with CNN results has a smaller error than some other methods for each estimator. All the 

SI and NI results show a statistically significant underestimation of the mean value (two-value t-test, p 

value < 0.01) 

 
Table 1 Comparison of the estimates of means and standard deviation of neointimal growth and restenosis ratio with qMC, SI 

and NI methods. The indicated error is the absolute difference from the reference qMC value. The four surrogate models for 

SIUQ are data-driven model I (DD I), data-driven model II (DD II), physics surrogate model (Phys) and convolutional neural 

network model (CNN).  

 
 

The execution times and resulting speedups of the SI and NI methods relative to the qMC method are 

evaluated and shown in Table 2. Because of the light surrogate model, the SI approach with CNN was 

approximately seven times faster than black-box qMC, an improvement of more than a factor three 

over the nearest-neighbour interpolation based surrogate model. The simplified physics model was 
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even faster, but was also the least accurate one, while the SI with CNN based surrogate model provided 

the best uncertainty quantification and sensitivity estimates among the four surrogates. 

 
Table 2 Comparison of the computational time and corresponding speedup of different approaches. The time value indicates 

the mean computational time obtained over 1024 samples. τ_micro is the execution time of the micro model (LBM/surrogate 

models) in one ISR2D 

 
 

Based on the result from [Nikishova_2019 and Ye_2021], one can see that uncertainty and sensitivity 

analysis of SI were as good as the NI by comparing the SI and NI results at similar computational 

efficiency. SI has the additional advantage of granularity, since only part of the model is replaced by 

the surrogate. This means that the parameters of the submodels not replaced by the surrogate can be 

varied and studied without changing the surrogate, as long as the replaced micro model is not affected. 

For example, in the case of the ISR2D model, different parameters and rule sets for cell behaviour can 

be used with the existing surrogate model for flow. On the other hand, using a NI model for a different 

biological ruleset would require essentially building a new NI surrogate, which would incur a significant 

computational cost. In general, both SI and NI approaches performed well. The SI approach is more 

suitable for cyclic multiscale simulations as it retains the framework of the simulation and can obtain 

the training data for the surrogate model at a relatively low cost. 

 

For the deep track application ISR3D, non-intrusive UQ was performed (reported in D4.3). Due to the 

expensive computational cost, a surrogate model based on Gaussian process regression was 

developed and deployed in the quasi-Monte Carlo simulations of UQ. The results of UQ are shown in 

Figure 1 and the speedup of UQP1-B (with surrogate model) compared to the UQP1 is shown in Table 

3. Different from ISR2D, the blood flow submodel and the SMC submodel share almost the same 

amount of computational cost in a single run of ISR3D. Therefore, the semi-intrusive UQ method is not 

ideal as the maximum speedup possible is only 2 with a surrogate model for the submodels.  

 

 
Figure 1 Mean, 50%, 75% and 95% percentile of the maximum relative area loss over time with quasi-Monte Carlo method 

and corresponding histogram and probability density function at day 30. 
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Table 3 Computation cost of ISR3D model and surrogate model and its corresponding speedup. 

 
 

2.1.2 Climate 

We have applied various fast- and deep track UQ tools to problems related to weather and climate 

modelling. Most of these have already been described in D4.3, which we only briefly recap here: 

 

1. We applied a fast-track non-intrusive method to the computationally expensive Dutch 

Atmospheric Large Eddy Simulation. Here we looked at the uncertainty in both physical and 

numerical parameters [Jansson_2021]. The number of parameters was relatively low, such 

that we could apply stochastic collocation, and get a much faster rate of convergence 

compared to Monte Carlo sampling. 

2. In the deep track we looked at scalability in an algorithmic context. We developed the reduced 

surrogate method [Edeling_2020], which compresses the data requirement for surrogate 

models of multiscale systems by several orders of magnitude. We applied this to a 2D ocean 

model. 

3. A related deep track activity is replacing the computational model for the small scales by a 

surrogate. We developed new stochastic machine-learning based surrogate models for this 

purpose and applied them to a simplified atmospheric model [Crommelin_2021]. 

 

Coupling a small-scale surrogate to a large-scale physical model is not guaranteed to be stable. In D4.3 

we already alluded to using new `online’ learning strategies to deal with this issue. Since that report, 

we have combined online learning in combination with the aforementioned reduced surrogates. The 

methodology is described in more detail in the forthcoming deliverable D2.3. Here we will just briefly 

show some new results. 

 

Figure 2 shows the time evolution of two QoIs from the 2D ocean model. First, we have the global 

energy (E(t)) and the global entropy (Z(t)). These are common QoI which are computed from spatially 

varying large-scale vorticity fields. The figure shows the results from both a high-resolution reference 

model (dots), and a low-resolution model with small-scale reduced surrogate (solid lines). Note that 

these lines are indistinguishable from each other. This is because we apply continual online learning 

here.  Without this, the QoI paths will diverge (due to chaos), and we have also observed that the 

system with a surrogate can become unstable if only offline learning is applied. We see the results of 

Figure 2 therefore as a promising first step towards coupled surrogate - physical multiscale systems, 

with a dedicated learning strategy that takes the coupling between the surrogate model and the 

physical system into account. All methods mentioned here are implemented in EasySurrogate. 
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Figure 2 The time evolution of the enstrophy (Z) and energy (E), extracted from the large-scale vorticity fields of the 2D 

Navier-Stokes equations. The dots represent the values of the large-scale PDE with a reference small-scale model, and the 

solid lines indicate the solution extracted from the large-scale PDE with a reduced small-scale surrogate, subject to online 

learning. 

 

2.1.3 Binding Affinity Calculator (BAC) / NAMD 

The Binding Affinity Calculator (BAC) application as described in D4.3 has been equipped solely with 

non-intrusive UQ by means of adaptive Stochastic Collocation (see Figure 3). Intrusive UQ methods 

have not been considered due to the unrealistic implementation costs associated. 

 

For a realistic BAC simulation, the number of parameters is very large. There are ∼16 000 energy terms 

in the system we are studying here, excluding the terms for all the water molecules. These energy 

terms contain ∼40 000 parameters. Only limited studies have been performed to quantify 

uncertainties from force field parameters, using relatively simple models such as TIP4P water 

molecules and/or focusing on a small subset of parameters such as those for the Lennard–Jones 

potential or the atomic radius and charge parameters. While quantification of the uncertainties from 

all the force field parameters is beyond the scope of this work, we note that the above studies show 

that the prediction uncertainty arising from parameters may be larger than statistical simulation 

uncertainty. To quantify the uncertainty associated with force field parameters, more advanced 

sampling techniques (e.g. Active Subspaces) or in-depth implementation of intrusive methods will have 

to be considered. 
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Figure 3 Sources of uncertainty and quality of predictions in molecular simulations for ensemble-based binding affinity 

calculations. (a) The types of uncertainties in the simulation (i) and the settings of parametric configurations (ii) are 

responsible for the uncertainty in predicted binding affinities (iii). Sensitivity analysis determines input parameters that most 

substantially impact predicted binding energy variability (iv). (b) The random errors are dealt with by ensemble approaches, 

in which multiple replicas (i) are simulated from initially close conformations. Neighbouring trajectories in the “underlying” 

phase space diverge exponentially fast (ii), generating different distributions for a quantity of interest (iii). The number of 

replicas used to perform ensemble averaging (iv) varies, depending on the required accuracy and the power of the available 

computational resources. 

 

We have a priori restricted the number of uncertain inputs: a 14-dimensional space is still too large to 

sample with standard SC or polynomial chaos expansions, while simple Monte Carlo is known to have 

a slow convergence rate. For this reason, we employ a dimension-adaptive variant of the SC sampler. 

The exponential increase with the number of inputs d limits practical applications of the standard SC 

method to less than about 10 uncertainty parameters. Non-adaptive SC for 14-parameters would have 

required m14 ensembles of MD simulations, with m the quadrature order.  

 

Our UQ campaign resulted in simulating 123 ensembles of MD simulations, with quadrature required 

up to order 6 for the most influential parameter (e.g. temperature, see Figure 4). We considered the 

adaptive SC method partially converged, in the sense of the relative error variance, but not the relative 

error mean (see Figure 5). With quadrature order being refined for only a very limited number of 

parameters (temperature, box size and compressibility) and having exceeded our computational 

budget (2,000,000 CPUhs on SuperMUC-NG), we in turn limited the campaign to 10 iterations. 
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Figure 4 Refinement of quadrature order for each parameter of the BAC application with the iterations of the adaptive SC 

process. 

 

 
Figure 5 Evolution of the relative error mean (red) and variance (blue) with the iterations of the adaptive SC sampling 

process. 

 

The use of the toolkit enabled us to demonstrate that the current practice of running one or only a 

small number of replicas of a molecular dynamics simulation is far from sufficient to control 

uncertainty as we had hypothesised. Small number of replicas does not enable one to control the error 

in the quantities of interest, as is achieved in a statistically robust manner by ensembles. Furthermore, 

the toolkit enabled us to demonstrate that the distributions of properties predicted using classical 

molecular dynamics cannot be assumed to be Gaussian but need to be assessed in each case, 

particularly when long-range interactions are involved. Conversely, the findings enabled by the use of 

the toolkit apply to classical molecular dynamics simulation in general, including to all forms of free 

energy estimation made using it. In conclusion, if we wish to produce actionable results from molecular 

dynamics simulations, whatever the predicted quantity of interest, we must invoke ensembles for 

which the use of modern supercomputers is essential. 
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2.1.4 Multiscale Migration Prediction (MMP) 

Multiscale Migration Prediction (MMP) is a deep-track application aiming to predict or forecast the 

distribution of forcibly displaced people that escape violent conflicts and arrive to camps in 

neighbouring countries. It is a complex phenomenon modelled using an agent-based simulation tool, 

namely Flee, which is based on a set of autonomous decision-making agents with their environmental 

rules [Suleimenova_2017]. Flee requires a range of input parameters to execute forced displacement 

instances that affect simulation output [Suleimenova_2021a]. We provided the Complex UQ technique 

UQP-A (“Sampling Efficiency”), verification and validation approaches to MMP in D4.3.  The multiscale 

nature of the application is derived from a coupling of a Flee micro scale model with a macro model, 

the integration with a conflict generator, as well as the integration of external data sources with 

different time scales (e.g. weather and food security). Specifically, we investigated precipitation and 

river discharge levels for the HiDALGO EU Horizon project affecting the movement speed of forcibly 

displaced people and their decision to remain in their current location or traverse through other routes 

for the South Sudan conflict between 2016-2017 [Jahani_2021]. 

 

We investigated the sensitivity of the input parameters using Stochastic Collocation (SC) with Sobol’s 

method and presented our results in D4.3. Using sensitivity analysis, we identified the influential 

parameters in Flee affecting simulation output. We also modified Flee by introducing new parameters 

and changing the logical structure of the algorithm. These modifications led to an improvement in the 

simulation output, i.e., a decrease in the mean total error across conflict situations 

[Suleimenova_2021a]. 

 

Moreover, we compared the baseline SC results against the output obtained using a Polynomial Chaos 

Expansion (PCE) sampler with a polynomial order of 2. We determined the Sobol sensitivity indices for 

input parameters, which corresponded to previously identified parameters across four African 

countries as illustrated in Figure 6.  
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Figure 6 Input parameter exploration results for seven parameters of forced migration across four African countries (a-d) using 

PCE with a polynomial order of 2. 

 

To establish a good estimation of sensitivity indices, we performed another set of analysis using PCE 

with a polynomial order of 3. The first-order indices of seven parameters for the Burundi conflict are 

relatively comparable against the polynomial order of 2 as demonstrated in Figure 7.      

 

 
Figure 7 Comparison between the first-order Sobol indices for seven input parameters of the Burundi simulation with 

polynomial orders of 2 (left plot) and 3 (right plot). 

In addition, we analysed polynomial orders for SC and PCE samplers focusing on the influential 

parameters, namely max_move_speed, camp_move_chance and conflict_move_chance, to verify the 

rate convergence (see Figure 8). The number of runs increased from 8 to 1000 for each polynomial 

a) Mali 

c) South Sudan 

b) Burundi 

d) Central African Republic 
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order starting from 1 to 9. We provide the detailed description of SA in application to forced 

displacement including the installation, parameter exploration, execution and analysis of obtained 

results in our recent publication [Suleimenova_2021b].  

 

      

2.1.5 Multiscale Fusion Workflow (MFW) 

The fusion multiscale workflow combines a transport code working on large time- and space-scales, an 

equilibrium code operating on the large space-scale and a turbulence code operating on small time- 

and space-scales to calculate the performance of the core part of a tokamak, which is a key metric for 

implementing fusion as a terrestrial power source.  A variety of approaches have been used in the 

fusion application as described in D4.3: Report on the implementation of nonintrusive and intrusive 

VVUQ techniques, section 4.5 Fusion, including 

● UQP1 (treating the entire workflow as a black-box) 

● UQP2-A (Semi-Intrusive acyclic) 

● metamodeling (UQP2-B, not yet generalized to UQP3-B) 

● VVP4 for comparing the experimental and simulation results 

In addition to the main workflow incorporating the expensive turbulence code, a variant where a much 

less expensive proxy is used has allowed for exploratory research on UQ techniques.  As a tutorial 

example, an even more stripped-down fusion app was developed which replaces the entire workflow 

with a Python program (solving a similar but much simpler problem); which has allowed for an even 

more extensive exploration of the limits of various UQ techniques. 

The fusion-app allowed for a large number of samples to be simulated, and 

● showed some deficiencies in the implementation of some parts of the EasyVVUQ Tool Kit 

○ calculation of Sobol indices was very expensive (fixed by changing the algorithm to use 

the coefficients of the PCE polynomials) 

○ management of a large number of samples 

■ creating many directories at the same level (fixed by creating a directory 

hierarchy) 

■ scaling of the database access (algorithm reworked to O(n)) 

Figure 8 The convergence of the first-order Sobol indices for the influential parameters of Flee using SC (left plot) and PCE 
(right plot) samplers. 
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○ that PCE can require very large amounts of memory for high orders (SC does not 

require this, so SC is to be preferred at the moment for cases with a large number of 

samples) 

○ that the analysis phase for PCE and SC can be very expensive in terms of time (not yet 

addressed since it is better to find methods avoiding a very large number of samples) 

 

The following table shows timing results in applying EasyVVUQ to the fusion-app for 5 varying 

parameters. 

 
Table 4 Timings for PCE and SC with 5 varying parameters for the fusion mini-app.  DASK was used to calculate the samples in 

SLURM batch queues and the set-up time for this was comparable to the calculation, resulting in the time taken for this phase 

to be roughly constant.  

  PCE SC 

Order # Samples Total 

Running the 

samples  

Analysing 

the results Total 

Running 

the 

samples 

Analysing the 

results 

1 32 89.95 87.54 1.75 43.91 42.78 0.41 

2 243 68.59 63.55 3.13 23.24 19.05 2.76 

3 1024 38.15 22.88 10.12 42.24 24.58 12.76 

4 3125 85.15 22.77 47.77 82.45 21.67 45.95 

5 7776 333.14 43.56 256.18 228.59 33.31 162.27 

6 16807 1395.55 80.72 1242.13 677.02 64.13 541.31 

 

We see that for higher numbers of samples (corresponding to higher polynomial orders), the time 

taken for the analysis phase is dominant.  This might not be true for other cases since the fusion-app 

has been designed to bring down the costs of running a sample, but calculating the samples is 

parallelized whereas the analysis phase is not (yet). 

 

If we look at a fusion-app case with 10 varying parameters (using SC), we see that the analysis costs 

become completely dominant: 

 
Table 5 Timings for SC with 10 varying parameters for the fusion mini-app. 

Order # Samples Total 

Running the 

samples Analysing the results 

1 1024 101.63 83.88 14.97 

2 59049 15,202.35 4,881.22 10,180.64 

3 1048576 3,580,672.00 101,575.42 3,476,360.00 
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Even though some parallelization 

of the analysis phase could be 

implemented (and perhaps should 

be in the future), other methods of 

reducing the cost are better. 

Applying adaptive methods to the 

analysis, the costs can be 

substantially reduced: to achieve 

comparable accuracy of the 

surrogate, adaptive SC took about 6 

hours versus the 40+ days for the 

full 3rd order SC, and required 1245 

samples rather than the 1 048 576 

for the full 3rd order SC. 

 

More details can be found in [Luk_2018], [Luk_2019a], [Luk_2019b], [Groen_2019], [Groen_2021], 

[Lakhlili_2020], [Richardson_2020], [Wright_2020], [Bosak_2021], [Coster_2021], [Luk_2021a], 

[Luk_2021b], [Suleimenova_2021b] 

2.1.6 Materials 

The materials application has been equipped with non-intrusive and semi-intrusive VVUQ techniques. 

In D4.2 section 2.1.4.1, we presented a fast-track example of using the “sweepsampler” VVUQ element 

of EasyVVUQ to determine the sensitivity to the calculation of stress in a molecular dynamics 

simulation of an epoxy network to the size of the simulation box. It was found that Young’s modulus 

(the gradient of stress vs strain) of an ensemble of different sized simulations of epoxy polymers varied 

considerably as a function of simulation size, with confidence intervals converging over a box size of 

4nm. The “sweepsampler” functionality is non-intrusive and allowed for an ensemble of “replica” runs 

to be generated for each group of input parameters, on which a bootstrap analysis can then be 

performed, using the EnsembleBoot analysis element (also from EasyVVUQ).  

 

Another example of using fast-track non-intrusive VVUQ techniques for research in materials 

concerned the aggregation tendency of graphene oxide (GO) flakes in different polymeric 

environments [Suter_2020]. We used coarse-grained molecular dynamics and newly developed 

accurate models of GO to determine the structures formed by GO flakes on the microscale. Two 

hydrophilic polymers, poly-ethylene glycol (PEG) and poly-vinyl alcohol (PVA), are used to illustrate the 

thermodynamically stable morphologies of GO and relevant dispersion mechanisms. The workflow 

utilised ensemble simulations to reliably predict the structures formed by GO, with replicas differing 

in their initial velocities which are generated randomly and independently from a Maxwell–Boltzmann 

distribution (i.e. a Monte-Carlo UQP). Each simulation was then run for an extended simulated 

annealing run to explore configuration space. The simulations were started from either a stacked 

configuration, where all flakes are aggregated, or a dispersed configuration. We defined a classification 

metric to determine whether the flakes had formed a morphology we could describe as dispersed, 

intercalated or aggregated/encapsulated (see Figure 10). The classification metric used the distances 

between each atom within a flake to atoms in other flakes. On an individual atom level we can define 

whether the atom is in an “aggregated”, “dispersed” or “intercalated” environment by using the 

Figure 9 Comparison of the fractional RMS error for predicting the QOI.  The 
abscissa is the PCE order for the “Full order” case, and the number of 
adaptation steps for the “Adaptive” case. 
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distance to atoms in other flakes, and for the flake as a whole we can examine the percentage of the 

flake atoms in each category. For reliable results, we require the error in our atom percentages to be 

small. We studied the behaviour of GO flakes with different degrees of oxidation on the GO surface 

(defined by the C:O ratio, for which we considered C:O = 10.0, 5.0, 2.5 and no oxidation, i.e. graphene). 

For more details see Reference [Suter_2020]. 

 

We chose 8 replicas for each scenario of chemical composition or physical starting structure to initially 

probe the system. We evaluated if this was a large enough sample by measuring our confidence in a 

quantity of interest using such an ensemble size. Figure 10 shows the 95% confidence interval for 

whether a flake assembles in PEG. We can see from Figure 10 that apart from flakes with a C:O ratio 

of 5 and 10, the trend of going from aggregated to dispersed as the oxygen content increases is clearly 

resolved with the sampling conducted. We can be confident, then, that our trend and results are 

replicable, and we do not need to increase the sample size further; we had already reached 

convergence with 8 replicas.  

 

 
Figure 10 (left) Representation of the three different configurations GO flakes can form in a polymeric environment. (right) 

The mean measured aggregation of flakes in PEG for different starting structures and amount of oxidation. Error bars are a 

95% confidence interval calculated by a bootstrap method. Some systems have very little variance in the measured 

aggregation and the error bars are smaller than the points shown here (e.g. the graphene stacked system). 

For deep-track applications in Materials, we have developed non-intrusive and intrusive VVUQ 

techniques for SCEMa (Simulation Coupling Environment for Materials). SCEMa is a multiscale 

simulation tool to predict the properties of materials based on their underlying chemistry and 

nanoscale structure. SCEMa consists of an implementation of the Heterogeneous Multiscale Method 

coupling Deal.II (Finite Element Method) and LAMMPS (Molecular Dynamics). It enables simulations 

coupling semi-concurrently the evolution of an atomistic and a continuum system. The evolution of 

the continuum system drives the mechanical evolution of the periodic homogeneous atomistic 

replicas. A description of SCEMa has been given in D4.3, section 2.3.8. In summary, we made use of 

non-intrusive UQP1 to analyze the uncertainty associated with SCEMa simulations. We have shown 

that neural network based surrogates converge faster than Gaussian processes based surrogates in 

terms of distribution of global force output (see Figure 11). We also attempted to build surrogate 

models of the molecular dynamics models to apply semi-intrusive UQP3B. The non-intrusive UQ relied 

on the building of a Gaussian Process (GP) surrogate model which showed good agreement with 

SCEMa’s predictions of the force applied on the dogbone sample to strain it. Further, SCEMa was 
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enhanced by a clustering algorithm enabling to avoid unnecessary redundant MD simulations, based 

on a redundancy threshold chosen according to the desired accuracy. In turn, we applied the VVP2 

(Level of Refinement) to verify the convergence of the clustering algorithm with respect to the 

similarity threshold parameter. 

 
Figure 11 Comparison of surrogate modelling methods efficiency to non-intrusively estimate UQ in SCEMa’s output: (left) 

Gaussian processes based surrogate and (right) neural network based surrogate. The distributions reflect the variability in 

global force prediction using SCEMa when applying a fixed positive strain on an epoxy bulk. 

2.2 External applications 

This section covers the work performed in Task 4.6: Apply the knowledge gained in T4.2 and T4.3 to 

additional multiscale workflows: 

 

Implement the VVUQ toolkit in additional multiscale application workflows provided by at least 

two external groups. 

 

The external applications covered are Neptune (UK fusion community), Alya, UrbanAir and three 

Coronavirus simulations.   

 

2.2.1 Neptune 

During the three hackathons in the presence of VECMAtk developers, the NEPTUNE community 

represented an important part of the participants in the 3 hackathons. We saw 5 to 10 participants 

from the NEPTUNE project join the online hackathon meetings out of the 25 to 30 participants. We 

report the contributions of each application team (BOUT++, Nektar++, EPOCH) during the hackathons 

in the following section. 

 

Three application teams were able to perform non-intrusive UQ of their single-scale model 

simulations. All teams were able to apply SC and PCE to compute sensitivity and uncertainty associated 

with up to four parameters. There is a consensus on using non-intrusive surrogates in the long term 

which will need to be refined and improved to handle a larger number of input parameters. 

 

Below is reported the UQ attempts entirely and directly performed by the three applications teams. 

2.2.1.1 Nektar++ 

Investigations of Nektar++ consisted in implementing UQ of single-scale simulations of a heat transport 

model providing a relationship between the quantity of interest (QoI) and two dimensionless numbers. 
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In this preliminary work PCE, SC, and GP were used to fit various QoIs using EasyVVUQ only (not 

EasySurrogate). 

 
The two input parameters, 𝑃𝑟 and 𝑅𝑎, were respectively the Prandtl number, that is the ratio of 

kinematic viscosity to thermal diffusivity (fluid properties), and the Rayleigh number, that is the 

dimensionless temperature difference. 𝑅𝑎 was varied in the range [1.0x101, 3.2x104] with log-uniform 

distribution; 𝑃𝑟 varied in the range [1,10] (typical values for experiments with air and water) with 

uniform distribution. 

 

For the steady-state problem, the Nektar++ team led by Ed Threlfall was able to perform SA and 

constructed PCE and SC surrogates, both using fifth-order polynomials during the hackathons (see 

Figure 12).  

 

 
Figure 12 UQ of the horizontal temperature profile halfway up the cavity (left), SA (first-order Sobol indices) of the two 

parameters (centre), PCE and SC surrogate models of the Nusselt number (right). 

Time-dependent simulations were also investigated using larger values of 𝑅𝑎. A GP surrogate model 

for time series was constructed using EasyVVUQ based on 12 samples varying only the parameter 𝑅𝑎. 

The surrogate model was in excellent agreement for quiescent cases (solution smooth) but issues were 

revealed in the case of higher Rayleigh numbers such as a persistent offset (see Figure 13). More work 

is needed to design optimal surrogates for chaotic time series, in particular surrogates that predict the 

correct phase diagram of the many scaling regimes in convective turbulence. This may require better 

tuning of kernel parameters for the GP surrogate; such methods will be discussed in the next section.  
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Figure 13 Fitting of the maximum wall temperature evolution for different regimes using a GP surrogate (Matérn ν=1.5 in 

kernel, and 𝑅𝑎=105 or 𝑅𝑎=106.5). 

2.2.1.2 BOUT++ 

Investigations of BOUT++ consisted in implementing UQ of single-scale simulations of a heat 

conduction 1D model and a plasma physics 2D model. In this preliminary work PCE, SC, and GP were 

used to fit various QoIs using EasyVVUQ but also EasySurrogate in this case. The work was carried by 

a team consisting of Joseph Parker, Peter Hill, Ben Dudson and collaborators. The 1D model focuses on 

the evolution of the temperature field expressed as different QoIs: T(x, tend), T(x0, t), log[T(x, tend)], 

varying the initial temperature and a single diffusivity parameter 𝝌 (see Figure 14): 

  
Issues of negative values were reported but later were found to be an artefact of polynomial fitting to 

steep temperature gradients with respect to parameter variations near zero. The issue was fixed by 

using higher-order polynomial fitting in PCE and SC. Adaptive SC was also used to circumvent the curse 

of dimensionality, anticipating performing UQ in high-dimension parametric spaces. 
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Figure 14 UQ (top) and SA (bottom) of the temperature profile expressed either as T (left) or log(T) (right). 

 

A second campaign was then implemented to quantify uncertainty in the evolution of density 

perturbations in 2D plasma, varying four parameters: background density, temperature, and 2 

dissipation parameters. Third-order PCE would have required 1296 cases, while SC only 256, the latter 

option was therefore retained. 

 

In later hackathons, a surrogate model was used to determine numerical parameters, and in particular 

numerical (non-physical) parameters for the design of optimal simulations. The simulated model 

consisted of the time advance of hyperbolic PDE with elliptic PDE solved every time step:  

  
These equations were solved using nested solvers, namely using CVODE for time and multigrid for 

spatial integrations [Hindmarsh_2005]. The surrogate model was built and trained for the 

aforementioned model which featured a 7-dimensional parameter space and a non-smooth 

dependence of behaviour on parameters. The QoI in the surrogate model is the error at a given 

timestep, that is max(Ea, ɑEr) based on the absolute Ea, the relative Er error tolerances (Ea, Er ∈ 

[10−15,1]) and ɑ a representative value of ||x||. The first step consisted of using PCE and adaptive SC 

to generate the surrogate models. Both methods achieved qualitatively similar results, but adaptive 

SC required many fewer code evaluations (130 vs 441). Both types of surrogates provided a 



VECMA - 800925 

 [D4.4_Application_Use_Cases]  Page 21 of 36 

 

qualitatively good model of errors at moderate order but over-fitted the noisier data at high order. 

One main issue was that the accuracy of the surrogate models stopped increasing even though more 

data was provided.  

 

 
Figure 15 CVODE - 2D scan with adaptive SC. Training data was obtained using a 2D manual parameter sweep (left), error 

model prediction at partial convergence (middle), at full convergence (right) of adaptive SC algorithm. 

Two more advanced surrogate modelling methods were subsequently considered: Artificial Neural 

Network (ANN) with EasySurrogate, and GPs with the SKLearn library in EasyVVUQ; both capabilities 

were added to the VECMA Toolkit during the period of this project. ANNs were able to emulate the 

data correctly, at the cost of training on approximately 50% of the dataset. By contrast, GPs were able 

to emulate data using only 5% of the dataset, albeit the results were highly sensitive to the sampling 

points. Adaptive sampling of training data for GP surrogate models might reduce such sensitivity while 

preserving the need for the smaller parts of the dataset. This is an open question requiring further 

investigation. 

2.2.1.3 EPOCH 

Investigations led by Tom Goffrey and collaborators consisted in implementing a surrogate model for 

stimulated Raman scattering (SRS) in laser-plasma interactions. The surrogate was trained using data 

produced by the EPOCH code, a mini-app version of which is currently being used in the NEPTUNE 

project. The EPOCH model simulations are typical of particle-based simulations yielding chaotic 

systems. Simulations featured 5 to 10 parameters and PCE via EasyVVUQ was applied to build the 

surrogate models. Custom encoders and decoders were developed for the campaign and execution 

featuring the QCG-PJ was implemented. A proof of concept sensitivity analysis on the performance of 

simulated laser-driven implosions was completed. Further conclusions regarding UQ of particle-based 

methods using EPOCH were not obtained due to time constraints during the course of the hackathons 

and the project.  

 

Nonetheless, in the meantime, we completed our investigations of standard classical molecular 

dynamics simulations, another exemplar particle-based simulation method [Vassaux_2021]. Our work 
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is the first and only fully detailed and thorough analysis of a particle-based code using modern UQ 

methods. Many-body particle-based simulations are chaotic systems. We showed that the uncertainty 

arises from a combination of (i) the input parameters and (ii) the intrinsic stochasticity of the method 

controlled by the random seeds. We performed a sensitivity analysis, which revealed that, out of a 

total of 175 parameters, just six dominate the variance in the code output. The sensitivity analysis 

computed first and higher-order Sobol indices, which respectively highlight the individual and 

combined influence of the parameters. We showed that simulations of free energies dampen the input 

uncertainty, in the sense that the variation around the mean output free energy is less than the 

variation around the mean of the assumed input distributions if the output is ensemble-averaged over 

the random seeds. Without such ensemble averaging, the predicted free energy is five times more 

uncertain. The distribution of the predicted properties is thus strongly dependent upon the random 

seed. Owing to this substantial uncertainty, robust statistical measures of uncertainty in molecular 

dynamics simulation, and more widely we anticipate particle-based simulation methods, require the 

use of ensembles in all contexts. 

2.2.2 Alya: simulations as regulatory evidence 

 

2.2.2.1 Background 

Over 5 million people suffer heart failure (HF) in the U.S. alone, with ∼1 million new cases annually 

[Benjamin_2019]. From these patients, about a 10% is in Stage D [Fang_2015] condition, being heart 

transplant the gold standard treatment. The limited organs availability is making left ventricular assist 

devices (LVADs) a leading treatment option, with a ∼90% 1-year survival rates [Jorde_2014]. LVADs 

are centrifugal or axial pumps apically implanted that help support the heart to reach the required 

cardiac output (CO) to sustain life.  

 

There is evidence [Bartoli_2018] that inflammation is associated with LVAD use, combined with the 

endothelial lesion and the abnormal flow patterns [Rossini_2020] are the three composing parts of the 

Virchow’s triad [Lowe_2003] for thrombus formation. The local flow conditions influence the type of 

thrombus created. White thrombus are formed in regions with high velocities and high shear stresses 

that lead to platelet activation [Varga-Szabo_2008] and fibrin aggregation. On the contrary, red 

thrombus are created by stagnant and slow recirculating flows with low shear stresses that lead to an 

aggregation of all blood components [Zhao_2008, Tan_2003]. While the latest LVADs generation have 

a reduced white thrombus formation due to the novel magnetic and hydrodynamic rotors, the patients 

still suffer thromboembolic events. The reason for this is that the abnormal LV flow patterns combined 

with the low shear stresses suggest the LV as a relevant site for red thrombus formation. 

 

While there is an extensive number of publications dealing with multiple LVAD factors like ventricular 

size [Chivukula_2019], cannula implantation position [Prisco_2017], implantation depth [Ong_2013, 

Liao_2018, Chivukula_2020] or angulation [Neidlin_2021], none of them provide credibility evidence 

as suggested in the recent ASME V&V40 [ASME_2018], neither guided by the historical V&V20 

[ASME_2009] specifically designed for computational fluid dynamics (CFD) more than 10 years ago. 

The reason for this is, most probably, that such a validation requires a thorough comparison of the 

simulation results against experiments and hundreds of executions of then numerical model, what 
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involves a large computational cost. This work follows the V&V40 pipeline for a computational model 

of a benchtop LV-LVAD system to quantify intraventricular flow patterns. 

 

2.2.2.2 Methods 

The bench experiments were performed with the San Diego State University (SDSU) cardiac simulator 

(CS). This CS is a mock circulation loop of the heart and the circulatory system with an apically 

implanted LVAD that has been reported previously in [Wong_2014, Garcia_2008]. It involves a silicone 

LV based on an idealised geometry, immersed in a water-filled tank and connected to an external 

circulatory loop mimicking the systemic circulation. The tank is fully watertight, so when the piston 

pump generates negative pressure, the LV expands to the end diastolic volume (EDV). Two beating 

modes and three pump speeds are used for six validation points. The condition 22[%] @ 68.42[bpm] 

has EF = 22[%] and HR = 68.42[bpm] with end systolic volume (ESV)=180[cm3] and EDV=230[cm3]. The 

condition 17[%] @ 61.18[bpm] has EF = 17[%] and HR = 61.18[bpm] with ESV=180[cm3] and 

EDV=216.86[cm3]. The pump speeds used for the validation points are 0[rpm], 8k[rpm] and 11k[rpm]. 

 

 
Figure 16 Summary of the experimental-simulation system used for the validation. The simulation domain is created from the 

silicone ventricle CAD. Multiple input variables are used and afterwards sampled like the heart rate (HR), the ejection fraction 

(EF), the left atrial pressure (PLA), the systemic characterisation variables (RP,RS,CP), the pump parameters (AVAD, BVAD) and 

the pressure signal for ventricular deformation LVp(t). Those inputs are feed to the numerical model and the comparators 

extracted for the Uncertainty quantification. 

 

The computational domain is created from the exact same computer geometry used to manufacture 

the silicone ventricle. To obtain a computationally inexpensive and accurate way of deforming the 

ventricle, a unidirectional FSI approach is used to deform the LV (similarly as [Liao_2018]). A pressure 

is imposed in the external solid domain which afterwards deforms the CFD domain between the ESV 

and the EDV. Once the simulation pipeline is completed, the input files are modified to work as a 

template. EasyVVUQ and FabSim3 (in a fork called FabAlya) are used to sample the inputs, execute the 

instances of the solver and retrieve the results. This is used for the Sensitivity Analysis (SA) and 

Uncertainty Quantification (UQ). 
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2.2.2.3 VVUQ plan 

The V&V 40 [ASME_2018] standard provides a framework for assessing the relevance and adequacy 

of the completed VVUQ activities. 

● Question of interest: For an apically implanted LVAD, does the numerical model that includes 

as inputs: (a) the pump H-Q performance curve, (b) the heart rate (HR), and (c) the pre-LVAD 

implantation Ejection Fraction (EF); produce flows and velocity fields that agree with the bench 

experiment? 

● Context of Use (CoU): The heart-LVAD computational model may be used to assist in the 

preclinical design and development of LVAD, by characterising the intraventricular flows for a 

given pump performance curve. The presented credibility evidence consist of: code and 

numerical verification by computing the observed rate of convergence in a manufactured 

solution and a mesh convergence study; UQ with mixed aleatory-epistemic inputs using 

validation against a bench experiment with six operating conditions. The heart-LVAD 

computational model will then be used to characterise ventricular flows and derived QoIs, but 

by no means replacing animal experiments or clinical trials. 

● Model influence: Although the numerical test will augment the evidence provided by the 

bench test, animal testing and clinical trials are still required. Therefore the model influence 

can be categorised as low as it only supports the evidence and it doesn’t solely rely on this 

computational evidence. 

● Decision consequence: The model is only intended to augment the bench test experiment 

information related with intra-LV flow fields and not to extract any clinical-related conclusion. 

Despite this, the model can model the device design in operation points in between the 

operation points. Therefore the decision consequence is categorised as medium. 

● Model risk assessment: As the model influence has been categorised as “low” and the decision 

consequence as “medium”, the LV-LVAD model is categorised with a risk of 2 on the 1-5 scale, 

therefore requiring a mid to low level goals in the VVUQ plan. 

 

These goals are defined in Table 6. The steps to achieve them are: 

1. Provide verification evidence: software quality assurance (SQA) practices should be followed 

to ensure reproducibility. A strict numerical code verification is mandatory to ensure 

correctness in the coding of the models. Numerical calculation verification is mandatory to 

ensure a correct spatial discretisation of the problem. 

2. Execute a sensitivity analysis in the operation range: A non-linear Sensitivity Analysis (SA) on 

the operation range of the cases should be executed to (a) understand the impact of each 

input in the QoIs, (b) Safely reduce the variables for the UQ. 

3. Proceed to the uncertainty quantification in multiple validation points: The extreme cases and 

a middle point should be investigated to ensure a credible solution. A comparison of the QoIs 

distribution is required including multiple metrics that allow comparing the results with other 

similar works and future projects. 

4. Provide an overall evaluation of the UQ results: a Final analysis in which range the model is 

credible is required to a safe use of the model for predictions. 
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Table 6 ASME V&V40 credibility factors [ASME_2018] analysed on the risk-based assessment. The table shows the maximum 

possible score (“Max.” column), the desired goal (“Goal” column) and the obtained score (“Obt.” column). The goal column 

also includes the description of the activity to achieve that gradation.  

 
 

2.2.2.4 Results 

The SA is intended to highlight the input parameters with a considerable impact in the QoIs. To proceed 

with the latin hypercube sampling (LHS) a uniform distribution is considered for the SA. 500 samples 

are obtained with LHS and shown in the scatter plot at Figure 17 together with the Pearson’s 

correlation coefficient ρ. Pearson’s ρ is a measure of the strength of a linear association between the 

two variables in each bivariate plot. From a visual analysis of the scatter plot it rises that the data is 

nonlinear, heteroskedastically distributed, and contains multivariate outlayers, failing 3 of the 7 
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assumptions required for Pearson’s analysis. To overcome this issue Sobol indices are calculated. Sobol 

indices provide information of the importance of each input taking into account complex factors like 

nonlinearities, input interactions, and sample dispersion. The Total Sobol index of each input with 

respect to each QoI are shown at the tornado plot in Figure 17. The larger the index, the more 

important that input is for the QoI. 

 

 
Figure 17 Scatter plots and total Sobol indices tornado plots for the 8 input variables and the 4 QoIs. The scatter plot also 

shows the Pearson’s linear correlation number ρ in the top left corner. 

 

The UQ consists of six validation points. For the sake of brevity, here we show results for a single 

validation point. As we count with a single execution of the bench experiment, the results are treated 

with an epistemic error range that is intended to account for the user error. On the contrary, the 

multiple executions of the numerical experiment let us use the statistical data for the output. Figure 

18 shows an example of one validation point (22[%]@68.42[bpm] and 8k[rpm] ). Results are analysed 

through scatter plots, empirical cumulative distribution functions (ECDFs), and multiple validation 

metrics. The validation metric is computed as in [Wong_2014], the minimum Minkowski L1 norm (MN) 

is chosen between the experimental range and the numerical distribution. 
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Figure 18 Summary for the condition 22[%]@68.42[bpm] and 8k[rpm]. (a): aortic valve and LVAD flows. (b): validation metrics. 

(c): scatter plot showing the simulation and experimental data. (d): ECDF for the simulation, experimental data limits and the 

constructed uniform distribution. 

2.2.2.5 Conclusion 

SA and UQ techniques are mandatory to create credible numerical results, at the cost of a high 

computational cost. Despite that fact, this work shows that credible simulations for regulatory support 

are readily available, if the HPC resources are not a technical difficulty. 

2.2.3 UrbanAir 

The UrbanAir (UA) application is tailored towards assessing and predicting air quality over complex 

urban areas. It is a multi-scale model that combines two community models – WRF (Weather Research 

and Forecast model), responsible for weather prediction at mesoscale or regional level, and EULAG – 

all scale geophysical flow which aims at solving transport of contaminants at city level. Predicting air 

quality is a challenging problem that requires a trade-off between the accuracy of results and 

acceptable time-to-solution. UA uses an immersed boundary method to accurately represent complex 

building geometry, and thus deliver a proper flow around buildings and contaminants transportation. 

It is therefore a computationally demanding application. 

 

The UA requires accurate weather prediction as input data, as well as accurate emission rates for 

different pollutants (e.g. SO2, NO2, NOx, PM2.5, PM10) and different types of sources. These include 

points sources – attributed to industrial chimneys, line sources – attributed to road transportation, 
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and area sources – attributed to heat appliances. The quality of prediction depends on the quality of 

input data. Taking the prediction of NO2/NOx as an example, which is attributed mainly to road 

transportation, initial information required includes number of cars passing the street, ratio between 

diesel and gasoline engines, fuel usage, fuel density, ratio between engine hot and cold start, etc. Some 

of these inputs may be estimated more accurately, e.g. number of cars (from statistical data or via 

additional simulation), while some remain a puzzle, e.g. ratio between hot and cold engines. To 

overcome these shortcomings, non-intrusive UQ has been applied to the EULAG model by means of 

Stochastic Collocation. The reason is two-folded. First, it allows us to run ensembles – simulations with 

different set of input parameters – to provide mean results taking into account uncertainty of input 

parameters of unknown value. Second, it helps to learn which input parameter impacts simulation 

results by the means of sensitivity analysis. 

 

With VECMAtk we sampled 8 input parameters: total number of cars, diesel to gasoline ratio and fuel 

usage, density, NO2 index for each type of fuel. For the selected uncertainty quantification method, 

256 ensembles were required to be computed. The analysis presented in Table 7, showed four 

parameters to be the most influential. This analysis allowed us then to limit the number of ensembles 

from 256 (with 8 input parameters being sampled) to 16 (4 input parameters being sampled) for future 

runs. 

  
Table 7 Sensitivity analysis of UA input parameters 

 
 

The aforementioned study resulted in 256 ensembles, running on total 6144 CPU cores, consuming ca. 

30k CPU core-hours. By limiting the number of runs we lower the CPU core-hours to just 1920. The 

VECMAtk orchestrates execution of the ensembles on HPC machines via the QCGPJ module – there is 

no need to populate runs manually over nodes, nor to map application instances to nodes, nor to 

change the code where different hardware resources are available.  Moreover, it allows us to see the 

differences in results between the ensembles. Last but not least, the ensembles generated and run via 

the VECMAtk makes it easier to understand differences in results between different runs, and to 

provide an average result. In this way we can analyze how NO2 concentration is changing with height, 

as presented in Figure 19. We are also analyzing how contamination concentration is changing through 

the whole domain at given height, as presented in Figure 20. 
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Figure 19 NO2 concentration at different heights for a given point in 2D space. 

 

 
Figure 20 NO2 concentration at 2m height for the whole domain. 

See references [Wright_2020], [Groen_2021] and [Suleimenova_2021b]. 

 

2.2.5 Coronavirus simulations 

The COVID-19 pandemic was not foreseen when the VECMA project was set up, but caused a 

redirection of some resources once it started.  Three such efforts are briefly described below. 

2.2.5.1 CovidSim 

CovidSim is a well-known and influential epidemiological code, that has been used to advise the UK 

government on the effects of various non-pharmaceutical interventions, e.g. social distancing and 

school closures.  It has a large number of parameters, which prompted us to implement a dimension-

adaptive version of Stochastic Collocation in EasyVVUQ. This work was published in Nature 

Computational Science [Edeling_2021], and is already described in D4.3. Here, we also mentioned the 

use of deep-active subspaces to quantify the uncertainty in CovidSim due to 19 chosen uncertain 

inputs. We have since increased this number to 41 without scaling difficulties, and are now planning 

to execute a 60 dimensional UQ campaign on the PSNC Eagle Supercomputer. 

 

Finally, we also implemented a global derivative-based sensitivity metric into EasySurrogate, which 

allows us to identify important inputs using the deep-active subspace network. The results for the case 

of 41 parameters are shown below. The same parameters are identified as important compared to our 

dimension-adaptive study of [Edeling_2021], which makes us confident in these results. Note that the 
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majority of inputs have no impact on the output. We think that machine-learning methods as described 

here therefore may have the potential of weeding out many uninfluential parameters from a large 

input set, as they scale well with respect to the input dimension. If one is wary of using a machine-

learning surrogate, it may be possible to construct a different (`classic’) surrogate model on the 

identified set of important inputs, if this set is small enough.  

 

Quite a number of toolkit components were engaged in the study of 41 parameters. The network was 

trained using EasySurrogate, on data from a simple Monte Carlo campaign generated by EasyVVUQ, 

which was submitted to the PSNC Eagle supercomputer using the QCG-PilotJob mechanism, with the 

overall workflow and data transfer managed by Fabsim3. 
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Figure 21 The global, derivative-based sensitivity indices extracted from the deep active subspace network.  
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2.2.5.2 Flu and Coronavirus Simulator (FACS) 

The Flu and Coronavirus Simulator (facs.readthedocs.io) is an agent-based simulation tool that models 

the spread of COVID-19 in local areas. The tool is in use by a range of health partners, and has for 

example been applied to forecast COVID-19 spread in several boroughs in West London. 

 

VECMAtk benefitted this application by facilitating ensemble simulation forecasts in a scalable and 

portable way, by automating a range of pre- and post-processing tasks, and by facilitating the analysis 

of sensitivity analysis covering a range of a key simulation parameters (e.g., latent period and public 

health measure uptake rates). 

 

Many of the FACS workflows are defined in FabCovid19, which in turn relies on the FabSim3 

automation toolkit. In addition, we use EasyVVUQ to perform parts of our sensitivity analysis for the 

code, and QCG-PilotJob to more rapidly execute our ensemble- and scenario-based forecasts. A first 

impression of the work being done in this regard can be found in [Groen_2021]. 

 

2.2.5.3 Dutch-Covid Model 

This study is already described in detail in D4.3 and was largely completed at that time. It used 

EasyVVUQ to not only assess the impact of physical parameters, but also examined the effect of 

random seeds. The only update here is that our article was accepted for computation in PLOS 

Computational Biology [Gugole_2021], a leading journal in the field. 

3 Conclusions 

Section 2.1 VECMA exemplar applications showed that all the VECMA applications have made use of 

the VECMA developed tools to their research areas.  The use of these techniques has improved the 

“actionability” of the results by quantifying the uncertainties in the predictions and addressing 

verifiability and verification of the workflows. 

 

Section 2.2 External applications showed the results from external partners (or, in some cases, work 

external to the VECMA project done by VECMA partners in collaboration with external partners) 

applying VECMA tools to problems in fusion, biotechnology, studies of pollution and epidemiology. 

 

This deliverable has shown the that the approach that VECMA has developed is useful to an extensive 

range of applications.  A range of UQPs have been applied to a set of applications covering fusion, 

climate, materials science, biology, migration, etc.  The UQPs have allowed the researchers to 

understand what impact the uncertain inputs have on the uncertainty of the model outputs, even for 

problems with many inputs, and to verify and validate these results.  The implementation of these 

ideas into the VVUQ toolkit has allowed the members of the project to perform this work effectively 

and efficiently and has also been taken up by users outside of the VECMA project to investigate UQ 

and V&V for their problems, allowing them a deeper understanding of the sources of uncertainty in 

their results. 
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