
VECMA - 800925

D5.3:Final report on the VECMA

infrastructure

Due Date 14 December 2021

Delivery 14 December 2021

Submission of updated

version

N/A

Lead Partner PSNC

Dissemination Level Public

Status Final

Approved Executive Board

Version V1.2

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 800925.

VECMA - 800925

DOCUMENT INFO

Date and version

number

Author Comments

06.09.2021 v0.1 Bartosz Bosak, Tomasz Piontek Skeleton for the document

19.09.2021 v0.2 Bartosz Bosak Introduction for the Vecma Infrastructure

section

25.09.2021 v0.3 Bartosz Bosak Summary on the Infrastructure Status

(introduction, diagram and table)

30.09.2021 v0.4 Bartosz Bosak, Tomasz Piontek Added Altair supercomputer description

05.10.2021 v0.5 Bartosz Bosak, Piotr Kopta Table with developed QCG-PilotJob

functionality

14.10.2021 v0.6 Bartosz Bosak, Tomasz Kuczyński VECMA Jupyter Notebook Platform

21.10.2021 v0.7 Bartosz Bosak, Michał Kulczewski,

David Coster, Hamid Arabnejad,

Derek Groen

Applications and Infrastructure

28.10.2021 v0.8 Bartosz Bosak, Piotr Kopta QCG-PilotJob Common Scheduling Service

29.10.2021 v0.9 Bartosz Bosak, Michał Kulczewski Dissemination activities

02.11.2021 v0.11 Bartosz Bosak, Derek Groen Collaboration with external projects

03.11.2021 v0.12 Piotr Kopta qcg-pm-report tool's usage reference

05.11.2021 v0.13 Nicholas Laver Language corrections

05.11.2021 v0.14 Tomasz Piontek General checking and adjustments

25.11.2021 v0.15 Bartosz Bosak, Piotr Kopta, Marco

Verdicchio, Werner Muller, Erwan

Raffin, Paul Karlshoefer

Performance evaluation

28.11.2021 v0.15b Derek Groen, Erwan Raffin Internal review

30.11.2021 v0.16 Bartosz Bosak, Piotr Kopta Addressed the reviewers’ comments

06.12.2021 v1.0 Nicholas Laver, Bartosz Bosak Fine-tuning

13.12.2021 v1.1 Bartosz Bosak, Tomasz Piontek Final editing after PI’s review

14.12.2021 v1.2 Peter Coveney Approval

[D5.3 Final report on the VECMA infrastructure] Page 2 of 35

VECMA - 800925

CONTRIBUTORS

● Bartosz Bosak, PSNC – main author

● Tomasz Piontek, PSNC - WP5 leader, author, supervision

● Piotr Kopta, PSNC - author

● Tomasz Kuczyński, PSNC - author

● Michał Kulczewski, PSNC - author

● David Coster, MPG - author

● Hamid Arabnejad, Brunel (UBRU) - author

● Derek Groen, Brunel (UBRU) - author

● Erwan Raffin, Bull - author

● Paul Karlshoefer, Bull - author

● Lourens Veen, eScience Center - author

● Marco Verdicchio, SURF - author

● Werner Muller, UCL – author

● Nicholas Laver, UCL – author, language corrections

[D5.3 Final report on the VECMA infrastructure] Page 3 of 35

VECMA - 800925

Disclaimer

This document’s contents are not intended to replace consultation of any applicable legal sources or

the necessary advice of a legal expert, where appropriate. All information in this document is

provided “as is” and no guarantee or warranty is given that the information is fit for any particular

purpose. The user, therefore, uses the information at its sole risk and liability. For the avoidance of all

doubts, the European Commission has no liability in respect to this document, which merely

represents the authors’ view.

[D5.3 Final report on the VECMA infrastructure] Page 4 of 35

VECMA - 800925

TABLE OF CONTENTS

1 Executive summary 8

2 VECMA Infrastructure 9

2.1 Final status of VECMA Infrastructure 10

2.1.1 Main Achievements of Work Package 5 10

2.1.2 New resources contributed to VECMA from M19 13

2.2 Pilot Job Mechanism 14

2.2.1 Developed functionality 14

Scheduling Queue Service 16

Performance Tracking and Analysis Suite 17

2.2.2 Performance evaluation 19

Initial tests of EQI 19

Synthetic Performance Tests on Altair 20

LAMMPS-based performance tests 22

○ ARCHER2 22

○ Cartesius 23

○ SuperMUC-NG 24

Summary from the performance tests 25

2.2.3 Integration with User-level tools 26

EasyVVUQ 26

FabSim3 27

MUSCLE3 27

2.3 VECMA Jupyter Notebook Platform 27

2.4 Applications and Infrastructure 28

2.5 Dissemination activities related to Work Package 5 29

2.6 Collaboration with external projects 30

3 Conclusions 31

4 References 32

● Annex I – QCG-PilotJob Documentation 33

● Annex II – VECMA Notebook Platform 34

[D5.3 Final report on the VECMA infrastructure] Page 5 of 35

VECMA - 800925

LIST OF FIGURES

Figure 1. Execution layer of VECMA architecture 9

Figure 2. Work Package 5 timeline with major accomplishments highlighted 10

Figure 3. High-level picture on the architecture of the QCG-PilotJob system with the QCG-PilotJob

Scheduling Queue service employed 17

Figure 4. Two ways of measuring QCG-PilotJob performance. METHOD 1 is based on a comparison

with a reference execution, METHOD 2 on measuring the resources idleness. The second method has

been assumed as more realistic and therefore selected for the implementation 18

Figure 5. Performance tests of EQI on SuperMUC-NG 20

Figure 6. The results of QCG-PilotJob performance tests from Altair when a single instance of the

service was used 21

Figure 7. The results of QCG-PilotJob performance tests from Altair in a partitioned execution model

21

Figure 8. The results of QCG-PilotJob performance tests on ARCHER2 23

Figure 9. The results of QCG-PilotJob performance tests on Cartesius 24

Figure 10. The results of QCG-PilotJob performance tests on SuperMUC-NG 25

LIST OF TABLES

Table 1. A list of main achievements of Work Package 5 11

Table 2. Main developments in QCG-PilotJob during VECMA 14

Table 3. Overview on applications in the context of infrastructure usage 28

Table 4. The list of dissemination activities of Work Package 5 29

Table 5. The list of projects that expressed interest in usage of VECMA Work Package 5 outcomes for

their needs 30

[D5.3 Final report on the VECMA infrastructure] Page 6 of 35

VECMA - 800925

ACRONYMS AND DEFINITIONS

Acronym Definition

API Application Programming Interface

EQI EasyVVUQ & QCG-PilotJob Integration API

HPC High Performance Computing

HTC High Throughput Computing

MPI Message Passing Interface

QCG Quality in Cloud and Grid

SA Sensitivity Analysis

VECMAtk VECMA Toolkit

VVUQ Validation, Verification and Uncertainty Quantification

[D5.3 Final report on the VECMA infrastructure] Page 7 of 35

VECMA - 800925

1 Executive summary
This document is a final report on the VECMA Infrastructure, established by Work Package 5. This

work includes the collection of requirements and design of the overall architecture of the VECMA

system (Task 5.1), the configuration and management of the project testbed, built upon several

large-scale computing resources (Task 5.2), the adaptation of existing middleware technologies (Task

5.4) and the development of new user-level tools (Task 5.5) in accordance with the needs of VECMA

users. This deliverable is a follow-up to D5.1 Architecture of the VECMA system and particularly D5.2

First report on the VECMA infrastructure. As such, it extends the information contained within those

documents.

The focus of this deliverable is twofold: firstly, it outlines the main achievements of WP5 across the

whole project lifetime and on all logical levels of the VECMA Infrastructure. Secondly, it provides

more detailed information about the activities undertaken after the release of D5.2, between months

19 and 42 of the project. This period resulted in crystallization and slight amendment of the VECMA

needs which subsequently influenced the priorities of Work Package 5. For example, as the project

partners expected there to be particular importance attaching to the pilot job solutions for the

VECMA VVUQ scenarios, considerable effort has been spent to enhance quality, robustness,

performance and scalability of the QCG-PilotJob tool, as well as to make this tool more user-friendly

and easily integrated with other VECMA toolkit components. Most notably, we made the following

major improvements to QCG-PilotJob:

● We added a restoring mechanism which allows a workflow of tasks to be restarted from the

point it was stopped (e.g. due to a failure or exceeding the wall-time limit).

● We performed a significant optimisation of the execution of iterative tasks.

● We streamlined the main QCG-PilotJob API and developed an alternative, simplified API

based on conceptions of Python Executor and Promise classes (used for integration with

EasyVVUQ).

● We prepared new documentation based on Sphinx and made it available on the

readthedocs.io portal

● We developed Performance Tracking and Analysis Suite to provide an easy and portable way

to monitor performance of the tool and enable users to discover bottlenecks in their

scenarios

● We established a common Scheduling Queue service that allows users to dynamically

integrate resources from many allocations

QCG-PilotJob has also been intensively tested in regard to portability and scalability across multiple

high-end computing resources. These HPC facilities have been provided by the VECMA partners, but

have also been offered through collaboration with external projects, such as CompBioMed2.

In addition, Work Package 5 has undertaken multiple activities that were important for the promotion

of the project. Beside common dissemination activities such as preparation of presentations, creation

of posters or participation in conferences and training events, efforts have also been expended on

more specific tasks, i.e. configuration and deployment of the VECMA Notebook Platform

(https://jupyter.vecma.psnc.pl/) on the PSNC's cloud infrastructure and making it available to all

people within the VECMA consortium and partners interested in using the VECMA toolkit.

[D5.3 Final report on the VECMA infrastructure] Page 8 of 35

https://jupyter.vecma.psnc.pl/

VECMA - 800925

2 VECMA Infrastructure
This deliverable describes the final status of the VECMA infrastructure developed within Work

Package 5 (WP5) of the VECMA project. This document summarises all achievements of WP5, but

focuses mainly on the work realised during the period between Months 19 and 42 (formerly Month

36) of the project and in a natural way extends information provided in the analogous deliverable

published in Month 18 (D5.2: First report on the VECMA infrastructure) and is based on the general

architectural from the deliverable published in Month 9 (D5.1: The Architecture of the VECMA

system).

Stated in previous deliverables, the term "infrastructure" within VECMA is exchanged with the term

"execution layer" and should be understood as hardware and software systems offered to the VECMA

project to enable and facilitate execution, as well as, verification, validation, and uncertainty

quantification (VVUQ) of multiscale simulations and applications. This means that the VECMA

infrastructure is a relatively broad concept and covers integrated automation and execution user-level

tools, infrastructure services and distributed HPC/HTC machines. This is depicted in Figure 1 (first

introduced in D5.1) which outlines the VECMA execution layer.

Figure 1. Execution layer of VECMA architecture

With this understanding of the infrastructure term, the following sections provide information about

tasks realised and accomplished under the umbrella of Work Package 5.

In order to avoid duplication, whenever it is not essential, this document doesn't repeat messages

already included in the previous deliverables of WP5. Thus, only the next section can be recognised

as a classical summary of the work done in WP5, while later sections concentrate mostly on recent

achievements and those aspects that should be explained in more detail.

[D5.3 Final report on the VECMA infrastructure] Page 9 of 35

VECMA - 800925

2.1 Final status of VECMA Infrastructure

The final status of the VECMA infrastructure at the end of the project, is a result of the realisation of

four tasks, namely:

● Task 5.1 Requirements, analysis and design of the VECMA architecture;

● Task 5.2 Creation and management of the project testbed and requirements to structure the

work across different teams in VECMA;

● Task 5.4 Enabling middleware technologies for efficient execution of the VECMA simulations;

● Task 5.5 Development of intuitive user-level tools to facilitate the usage of the VECMA

e-Infrastructure environment.

Please note that, due to the common agreement between partners being a result of the performed

requirements analysis "Task 5.3 Application of simulation frameworks to simulate execution of

VECMA codes on forthcoming, exascale computational resources" - which was initially planned for

realisation in the second part of the project - has been cancelled, and the efforts initially assigned to

it have been consequently moved to other tasks, namely Task 5.4 and Task 5.5. [5, 4]

Please also note that, by common agreement in the consortium, the project has been extended by 6

months from the initial period of 36 months. Consequently, we've decided to extend the timeframe

of Task 5.2, Task 5.4 and Task 5.5 accordingly, and finish all these tasks at the newly defined end of

the project, in month 42. This decision allowed not only the spread of development work in time, but

more importantly, to steer that work based on emerging, and more well defined, needs of VECMA

users. Not without significance for the WP5, there was also the possibility to schedule dissemination

activities more flexibly.

2.1.1 Main Achievements of Work Package 5

The main achievements of WP5 are presented visually in Figure 2 and described in more detail in

Table 1. Let's firstly concentrate on the first representation.

[D5.3 Final report on the VECMA infrastructure] Page 10 of 35

VECMA - 800925

Figure 2. Work Package 5 timeline with major accomplishments highlighted

Figure 2 provides an overview of the work done within the work package, broken down into

individual tasks according to the predefined schedule. Each of the tasks has its own lane where the

main outcomes of the task are graphically depicted. Although it is not strict, the order of elements on

the timelines provides an estimation of when resource and software items were made available to

the consortium for the first time. Arrows on the diagram outline the main relations between tasks

within WP5 and the connections to other work packages. As such, it can be noted that there was a

close cooperation and merge between Task 5.4 and Task 5.3 conducted by WP5, and associated tasks

in WP3 and WP4. This joint work has allowed the VECMA project to develop the VECMA Toolkit [7]

according to the scientific expectations of researchers on one hand, and to efficiently leverage

capabilities of the computing resources on the other.

It can also be noted that QCG-PilotJob, Jupyter and QCG-Monitoring icons are included in both lanes,

for T5.4 and T5.5 tasks, indicating that there was joint development of these software components in

both tasks.

We next move to the stricter overview of the main achievements of the WP5, which is presented in

Table 1. Each row in the table addresses a specific item that can be recognised as an achievement. For

each of these items, the following data is provided:

● Item: the name of the item,

● Task: a task or tasks that have been directly involved in the development of the item,

● Time: the period in which there was work done on the item, or the item was in an "active"

state,

● Results: descriptive information about the result of the work,

● Comments.

Table 1. A list of main achievements of Work Package 5

Item Task Time Results Comments

[D5.3 Final report on the VECMA infrastructure] Page 11 of 35

VECMA - 800925

Requirement
s analysis

T1 M1-
M9

The set of requirements for architecture design as an
input for the architecture of VECMA system (D5.1).

Input from WP3 and
WP4

Architecture T1 M1-
M9

Three-layered architecture of the VECMA system,
consisting of: Applications, VVUQ and Infrastructure
layers (D5.1).

Testbed:
Instructions
and
procedures

T2 M3-
M18

A set of instructions and procedures, in a form of
dedicated guidance for different VECMA
stakeholders, available on a wiki page (D5.2).

Testbed:
Access to
Eagle

T2 M3-
M30

The access to Eagle supercomputer hosted at PSNC
was possible for all partners starting from M3 to
M30 (D5.2), then Eagle was replaced by Altair. The
overall budget provided to VECMA was 9M Core
Hours.

around 75% of the
budget has been
consumed

Testbed:
Access to
SuperMUC-N
G

T2 M3-
M42

The access to the SuperMUC-NG supercomputer
hosted at LRZ is possible for all partners starting
from M18 (D5.2). The annual budget provided to
VECMA partners on SuperMUC-NG oscillated around
100K Core Hours.

Testbed:
Access to
Altair

T2 M31-
M42

PSNC's Altair supercomputer launched at the
beginning of 2021 is a successor of Eagle. It is
available on the same terms as Eagle to all VECMA
partners. The available budget for VECMA for 2021 is
equal to 5M Core Hours.

Testbed:
Access to
Many and
Genji

T2 M3-
M42

The allocation on the Bull's resources has been given
to the Bull partner for the works on scalability and
efficiency of VECMA software (D5.2).

Testbed:
Third-party
resources

T2 M3-
M42

A set of additional resources has been given to
VECMA partners on an individual basis. This set,
among others includes: ARCHER, Cartesius, Marconi,
Cobra, Draco, Hazel Hen, Prometheus, Tryton (D5.2),
ARCHER2.

The access to
ARCHER2 and
Cartesius was possible
thanks to the
collaboration with
CompBioMed project

QCG
middleware

T4 M9-
M42

QCG middleware services have been deployed on
Eagle, Altair, and several resources belonging to
PLGrid Infrastructure and available to PSNC (D5.2).

Due to procedural
restrictions,
deployment of QCG
services on
SuperMUC-NG has
been abandoned.

QCG-PilotJob T4,
T5

M9-
M42

QCG-PilotJob has been variously extended and
improved. The updates range from development of
new functionality, through improved portability and
scalability to preparation of extensive
documentation and tutorials.

https://qcg-pilotjob.re
adthedocs.io

VECMA T4, M15- A self-hosted JupyterLab platform has been https://jupyter.vecma.

[D5.3 Final report on the VECMA infrastructure] Page 12 of 35

https://qcg-pilotjob.readthedocs.io
https://qcg-pilotjob.readthedocs.io
https://jupyter.vecma.psnc.pl

VECMA - 800925

Jupyter
Notebook
Platform

T5 M42 deployed on PSNC's Cloud infrastructure and
adjusted to VECMA needs. It has been made
available to both VECMA partners and external
users.

psnc.pl

QCG-
Monitoring

T4,
T5

M15-
M42

An instance of QCG-Monitoring service has been
integrated with the QCG middleware services for
VECMA and offered to users on a pre-production
basis (D5.2). A dedicated monitoring scheme for
tracking progress of QCG-PilotJob has been already
constructed, while other schemes, especially for
individual applications, can be added to the service
depending on demands.

QCG-Client T5 M9-
M42

QCG-Client has been offered to users along with the
QCG middleware. A remote instance of the tool has
been deployed on a dedicated machine being in
administration of PSNC. During the course of the
project, QCG-Client was also containerised and
employed as a backend for FabSim3 (D5.2).

FabSim3 T5 M9-
M42

Under WP5 FabSim3 has been integrated with QCG
middleware services (to this end, a containerised
version of QCG-Client has been used [4]) and
QCG-PilotJob. This integration has enabled several
FabSim user communities (e.g. in migration, climate
and pandemic modelling) to routinely use
QCG-PilotJob for their work.

FabSim3 has been
developed mainly in
Work Package 3 as a
part of VECMA toolkit.

EasyVVUQ-
QCGPJ (EQI)

T5 M9-
M42

EasyVVUQ-QCGPJ (EQI) is a lightweight library that
integrates early versions of EasyVVUQ with
QCG-PilotJob. EQI is not compatible with EasyVVUQ
versions starting from 1.0.

EasyVVUQ from
version 1.0 provides a
built-in QCG-PilotJob
executor that replaces
EQI

QCG-Now T5 M15-
M42

QCG-Now has been offered to VECMA end-users as
an intuitive GUI for submission of VVUQ tasks for
execution on QCG-managed resources. To this end a
dedicated QCG-Now domain for VECMA has been
created and the tool has been integrated with
VECMA middleware services, including
QCG-Monitoring (D5.2).

2.1.2 New resources contributed to VECMA from M19

The extensive information about the resources provided to VECMA in the first 18 months of the

project was presented in D5.2 [4]. Here we extend this list with a description of new and largely

modified resources that are currently available to VECMA project participants.

Altair

The PSNC Altair supercomputer [23], which was commissioned in January/February 2021, is an

extension of the Eagle supercomputer. Thanks to its 1320 nodes equipped with two Intel Xeon

Platinium 8268 processors each, it reaches a total performance of 5.9 Pflop/s. From the perspective

of users, Altair is a separate partition of Eagle, so is available in the same manner as the old resource.

All VECMA participants have benefited from the 5M Core Hours budget on Altair reserved for 2021.

[D5.3 Final report on the VECMA infrastructure] Page 13 of 35

https://jupyter.vecma.psnc.pl

VECMA - 800925

Marconi

The Marconi supercomputer at CINECA is available for the MPG partner, where a grant of 4.6M Core

Hours was allocated to the VECMA project in 2021. The resource consists of traditional Skylake

processors and recently commissioned Nvidia V100 accelerators. They offer 8 Pflop/s and 21 Pflop/s

of computing power respectively.

Raven

Raven is a new HPC system installed in Garching and is available for the MPG partner. It is a

heterogeneous machine consisting of traditional nodes equipped with Xeon IceLake-SP processors,

which offer a power of 8.8 Pflop/s, and nodes with Nvidia V100 accelerators, which provide power of

16 Pflop/s.

ARCHER2

ARCHER2 is the latest UK national supercomputer built using nodes equipped with dual AMD EPYC

Zen2 (Rome) 64 core processors at 2.2GHz. As we submit this report, the full 23-cabinet 750,000 core

machine is now entering production, and should reach a peak performance of around 28 Pflops/s.

The VECMA project was able to benefit from the initially installed 4-cabinet ARCHER2 system

available since Q2 2021, consisting of 1024 nodes, thanks to the collaboration with CompBioMed2

[19].

2.2 Pilot Job Mechanism

The standard mechanisms available on large-scale HPC computing resources are geared towards

execution of computational tasks which are large and relatively long, and submitted occasionally.

However, in the context of VVUQ, there is an inherited need to run numerous, relatively short and

small simulations required for reliability of results. In the VECMA project, to support such scenarios in

an efficient and consistent manner, we considered employment of RADICAL-Pilot and QCG-PilotJob.

After the analysis of VECMA requirements and the proffered functionality of both tools, we found

both solutions suitable, but ultimately we decided on broader usage of QCG-PilotJob [8]. This

decision was motivated not only by purely technical aspects, such as simplicity of deployment or

easiness of integration with other tools, but also because the author of QCG-PilotJob, i.e. PSNC, as a

VECMA partner, could offer the required assistance throughout the VECMA project.

QCG-PilotJob overcomes restrictions present on HPC resources by provisioning a second-level

scheduling mechanism, which is available from an intuitive Python API, and can be easily employed to

build workflows consisting of numerous tasks. In order to provide sufficient level of support to

VECMA application scenarios, the tool has been extensively tested, then extended and optimised

during the timeframe of the project. It has also been integrated with several VECMAtk components,

as well as, intensively tested on large-scale computing resources, which we report in the late part of

this deliverable. Finally, it has been successfully employed for executions of complex application

use-cases on a regular basis.

2.2.1 Developed functionality

Over the course of VECMA, guided by both the generic circumstances of implemented VVUQ

scenarios and requirements of individual applications, the functionality of QCG-PilotJob has been

extended. An overview of the main developments is presented in Table 2. Please note that this table

[D5.3 Final report on the VECMA infrastructure] Page 14 of 35

VECMA - 800925

outlines only the major new features, while there have been multiple other developments aimed at

improving flexibility, scalability, efficiency as well as portability of the tool.

Table 2. Main developments in QCG-PilotJob during VECMA

Feature Release Description Comments

LocalManager 0.4.1
(M12)

Enables starting QCG-PilotJob Manager
directly from a python code

Virtualized/Te
st mode of
execution

0.4.1
(M12)

Possibility to define virtual resources for
QCG-PilotJob Manager

The functionality allows testing a
scenario on a local computer before
it goes to an HPC machine.

Node
Launcher

0.5
(M15)

A dedicated lightweight service for more
efficient starting tasks on nodes

Current implementation supports
single-core tasks; multi-core tasks are
started with srun.

Reservation of
a CPU core for
QCG-PilotJob
Manager

0.5
(M15)

In order to separate the management of
tasks from their computation, a
dedicated CPU core can be reserved
exclusively for QCG-PilotJobManager.

This capability is particularly useful in
case of demanding workflows, where
scheduling of tasks may be CPU
intensive.

Tasks CPU
binding

0.5
(M15)

Binding of tasks to CPU's cores allows to
ensure correct assignment of tasks to
resources.

Without this feature many tasks
could run on the same cores,
resulting in inefficiencies.

Automatic
binding to
free TCP ports

0.5
(M15)

Releases QCG-PilotJob from running on a
predefined TCP port and allows it to run
on the free one.

Passing
modules and
virtual
environment
to tasks

0.6
(M18)

Information about modules and python's
virtual environments can be passed from
the parent script to tasks.

API
refinement

0.8
(M24)

The API has been largely modified in
order to make it more consistent and
simpler to use.

Among others change of the main
module name from qcg.appscheduler
to qcg.pilotjob.

New form of
documentatio
n based on
Sphinx

0.8
(M24)

The tool's documentation has been
transferred to *.rst files, refined,
extended and then placed on the
readthedocs.io portal.

Documentation link:
qcg-pilotjob.readthedocs.io
See also: Annex I – QCG-PilotJob
Documentation

Extended
support for
iterative jobs

0.8
(M24)

Refined configuration of iterative tasks
and provided a new optimised
mechanism of launching such tasks

Execution
models for
MPI tasks

0.9
(M27)

Developed new execution models
designed to launch MPI applications with
different implementations of MPI and
Slurm configurations

New models: intelmpi, openmpi,
srunmpi.

Support for
hyper-threadi
ng

0.9
(M27)

Automatic discovering of
hyper-threading configurations and
binding of more than a single CPU to

[D5.3 Final report on the VECMA infrastructure] Page 15 of 35

VECMA - 800925

process

Restoringmec
hanism

0.10
(M30)

Support for restoring execution of
workflow only for the tasks that have not
been executed, e.g. due to the exceeding
walltime limit.

Provides means of fault tolerance:
not completed tasks can be rerun,
without losing results of other tasks.

Collection of
metrics from
executions

0.11
(M33)

Support for gathering basic information
about tasks executions.

This is the first module of the
Performance Tracking and Analysis
Suite.

Performance
Tracking and
Analysis Suite

0.11.1 A wrapper has been provided to
automatically collect detailed timings
from jobs and the qcg-pm-report tool to
generate various reports.

The suite has been employed to
ensure consistency of performance
tests of the toolkit, which were
executed on different resources and
by different people.

Executor-like
interface

0.12.1
(M36)

Developed an alternative API that in
some aspects mimics concurrent.futures
API provided with Python.

The API is suitable for integration
with tools already using Python
Executor and Future concepts. In
VECMA allowed to employ
QCG-PilotJob as an executor engine
for EasyVVUQ and thus improve its
scalability

Breakdown of
the tool into
components

0.12.1
(M36)

QCG-PilotJob has been split into
functionally-diversified components,
currently: core, cmds and executor-api.

Only the core component is essential
from the users' perspective. Other
components are auxiliary.

Enumeration
values in
iterative tasks

0.12.3
(M39)

Improved functionality of iterative tasks:
iteration element can take a list of
enumeration values as an input

Minimisation
of the srun
command
usage

0.13.0
(M42*)

The basic mechanism that allowed to
start QCG-PilotJob agents only with srun
has been generalised and allows to
select different mechanisms, e.g. ssh

The aim is to reduce the number of
uses of the srun command, which for
demanding workflows can affect the
stability of SLURM. Motivated by the
tests on SuperMUC-ng

Pub/Sub task
status queries

0.13.0
(M42*)

Provided an asynchronous notification
mechanism on a level of QCG-PilotJob
manager so the client (via API) can trace
the task status changes without periodic
querying the service

Scheduling
Queue service

0.14.0
(M42*)

The initial version of the Scheduling
Queue service that allows to instantiate
QCG-PilotJob across many allocations.

* The item not yet released

Scheduling Queue Service

The realisation of the Pilot Job mechanism on a level of single allocation can be seen as a main

building block to create a more sophisticated solution that allows resources from multiple allocations,

even from multiple physical computing machines, to be combined and served as a large virtual

[D5.3 Final report on the VECMA infrastructure] Page 16 of 35

VECMA - 800925

resource. In order to realise this conception, during the final year of the project many efforts have

been spent to develop the QCG-PilotJob Scheduling Queue service, which can act as a common

source of information for the execution of QCG-PilotJob tasks across many allocations (the baseline

architecture of this conception is presented in Figure 3). Consequently, an initial version of the service

has been provided and tested with the selected usage scenarios. At the time of writing, the process

of fine-tuning this service is still ongoing, and we are expecting to perform more tests in the near

future. Once ready, the common Scheduling Queue service can be used to integrate many computing

resources together, as well as, to automatically and dynamically extend (or limit) a set of available

resources depending on current needs.

Figure 3. High-level picture on the architecture of the QCG-PilotJob system with the QCG-PilotJob Scheduling Queue service
employed

Performance Tracking and Analysis Suite

As already stated, the scalability and efficiency of QCG-PilotJob plays a key role for the execution of

VECMA VVUQ scenarios on peta- and exa-scale machines. Therefore, it is important to determine the

limits of the software in general, but also to figure out if a given application use case can be efficiently

handled by the software. To this end, the possibility to both measure the overheads of QCG-PilotJob

itself, and to easily discover potential optimisation points in the aligning application scenario to the

mechanisms of the tool are essential.

The workflow efficiency evaluation is a complex aspect dependent on many factors and sensitive to

even small differences in the scenarios being executed, such as resource allocation, as well as task

assignment or scheduling. Due to the main design assumption, which is simplicity of deployment and

use, QCG-PilotJob doesn’t contain any advanced scheduling policies. Instead, jobs in QCG-PilotJob are

considered, and if possible, executed in a FIFO manner (first in, first out) with elements of back-filling

(i.e. tasks further-down in a scheduling queue might be executed earlier if they fit into currently

available resources). The user has an influence on the efficiency of scheduling operation, only by

[D5.3 Final report on the VECMA infrastructure] Page 17 of 35

VECMA - 800925

skilful adjustment of the allocation size and tasks to be run. Therefore, in order to measure the

performance of QCG-PilotJob reliably, it is extremely important to look at the effectiveness of the

tool, taking into account the unavoidable influences of unbalanced allocation of tasks to resources.

For the sake of performing QCG-PilotJob efficiency tests in a repeatable and unambiguous manner, a

dedicated Performance Tracking and Analysis Suite has been developed. The suit consists of two main

elements:

- a lightweight wrapper on tasks started by QCG-PilotJob which collects data on the start-time

and end-time of each task;

- a command-line qcg-pm-report tool that allows the production of various reports based on

the collected timings.

To determine QCG-PilotJob execution efficiency, i.e. to measure the time spent on assigning jobs to

available resources, as well as, launching and managing tasks, we considered implementation of one

of two methods. The first method (METHOD 1) was to measure the theoretical minimum time of

running specific tasks on available resources without QCG-PilotJob and compare it with the time of

running the same scenario with QCG-PilotJob. The alternative (METHOD 2) was to measure and

sum-up the time intervals when available resources have not been utilized, that is the intervals

between one process finish time and the next process start time with regard to the scheduling plan.

For an overview of these two methods please see Figure 4. Note that the presented scenarios are

greatly simplified and we assume here only a serial execution of pilot job tasks. Since the

performance of the former method is conditioned on the theoretical assumptions that the exact

runtime of each of the tasks launched by QCG-PilotJob is known in advance, as well as that there are

no external factors, such as temporary I/O performance of the file system or network connections

influencing the computations, we decided on the implementation of the latter method, which is free

of such drawbacks.

[D5.3 Final report on the VECMA infrastructure] Page 18 of 35

VECMA - 800925

Figure 4. Two ways of measuring QCG-PilotJob performance. METHOD 1 is based on a comparison with a reference
execution, METHOD 2 on measuring the resources idleness. The second method has been assumed as more realistic and

therefore selected for the implementation

QCG-PilotJob provides a set of tools that not only shows the metrics describing the performance of

the computation, but also helps to diagnose potential scheduling imbalance problems. All these tools

are available with the qcg-pm-report command by passing the name of the tool as the first argument

and the location of the working directory where QCG-PilotJob was executed as the second. Let us

briefly introduce each of the currently available tools:

● stats: displays basic metrics such as allocation size, number of jobs (including those

terminated with an error), service initialization, run and termination times, initialisation and

service termination overhead expressed as both percentage of the total runtime and

core-hours.

● rusage: generates metrics related to resource usage. It displays the number of cores used in

the computation (which may be lower than the total number of allocation cores) as well as

their usage percentage. The utilization rate is calculated as the ratio of the time during which

any job was running on each core to the total runtime of the QCG-PilotJob service. The

optional --details argument allows you to generate an individual utilization percentage for

each core included in the allocation.

● efficiency: shows the resource usage as a percentage if we exclude the time when the

resource was inactive due to a scheduling plan. Resource usage time is assumed to be the

time when a task was running or when a task was waiting for another task(s) to free up

resources. Thus, the efficiency metric only takes into account delays due to QCG-PilotJob's

job launching and termination handling.

[D5.3 Final report on the VECMA infrastructure] Page 19 of 35

VECMA - 800925

● launch-stats: provides metrics showing the delay of the QCG-PilotJob service in starting and

recording the completion of a job.

● gantt / gantt-gaps: depending on a specified command, this generates the timeline plot with

marked runtimes of individual tasks on allocated resources or a timeline plot with marked

moments when resources were not used. These plots are the easiest way to spot scheduling

imbalance problems and mismatches between selected task scheduling and available

resources.

For the full reference please see the QCG-PilotJob documentation available at readthedocs [8].

2.2.2 Performance evaluation

To measure the actual performance of QCG-PilotJob in a real environment and with realistic

scenarios, WP5 has organised and led software testing activities on several large-scale HPC machines

across Europe. Testing began in the middle 2020 on SuperMUC-ng by testing the performance of

integrated EasyVVUQ with QCG-PilotJob through EQI, however the actual testing of QCG-PilotJob

intensified in the period April 2021 to November 2021, after the release of the QCG-PilotJob

Performance Tracking and Analysis Suite which makes the collection of performance statistics and

analysis of results easier.

Initial tests of EQI

EasyVVUQ library has been designed to allow the exchange of execution backends depending on the

complexity and demands of the VVUQ scenarios. From the very beginning of the project,

QCG-PilotJob has been considered as a prospective software that could run a huge number of

ensembles efficiently, and what's more, could be easily incorporated into EasyVVUQ as an execution

engine. In order to verify the actual readiness of QCG-PilotJob to meet these objectives, a set of initial

performance tests has been performed over the EQI tool on the SuperMUC-NG supercomputer. Since

EQI, being the lightweight and non-intrusive integrator between EasyVVUQ and QCG-PilotJob,

imposed only a marginal overhead on the operation of QCG-PilotJob, the tests, in practice, were a

reliable measurement of the performance of QCG-PIlotJob on its own. Figure 5 presents the

operation of EQI for one of the test use-cases, where 50 dual-socket nodes of SuperMUC-NG were

used. The crosses indicate the start of new UQ tasks. It can be noted that the shifts between these

crosses, which reflects delays associated with performance of QCG-PilotJob, are negligible, which

means that QCG-PIlotJob remained reliable for the whole test lifetime. These initial performance

verification tests have confirmed the applicability of QCG-PilotJob to the needs of EasyVVUQ and

motivated the consortium to more closely integrate EasyVVUQ and QCG-PilotJob. Consequently, EQI

has been abandoned and QCG-PilotJob has been incorporated into EasyVVUQ as an execution engine.

[D5.3 Final report on the VECMA infrastructure] Page 20 of 35

VECMA - 800925

Figure 5. Performance tests of EQI on SuperMUC-NG

Synthetic Performance Tests on Altair

To analyse the performance of QCG-PilotJob more deeply and search for optimisation points which

may be critical for the VECMA’s aspiration to reach the exa-scale, several further large-scale test

campaigns have been established. The first of these was run on the Altair supercomputer before it

was officially commissioned. With access to an allocation of 800 computing nodes equipped with 2

Xeon Platinum 8268 24C 2.9GHz processors each and InfiniBand EDR interconnect, we were able to

instantiate test scenarios that run on up to 38,400 cores. The exclusive access to the resources was a

great opportunity to perform reliable and extensive tests that were not affected by the execution of

competing tasks. Consequently, we were able to define demanding HTC-like testing scenarios that

were characterised by execution of many relatively short (in terms of walltime) and small (in terms of

number of used cores) tasks. The tasks themselves were simple “sleeps”, so did not influence the

operation of QCG-PilotJob. Importantly, we took care to properly assign tasks to resources to ensure

that situations where resources were not used were held to a minimum. The scenarios were executed

for the first time with the support of the newly implemented Performance Tracking and Analysis

Suite, in two different manners:

● with a single instance of QCG-PilotJob Manager (single partition),

● with many instances of QCG-PilotJob Manager (many partitions).

The test results for these two schemes are shown in Figure 6 and Figure 7 respectively. Yellow points

show the resource usage, grey bars represent the overhead induced by both the initialisation and

finalisation of QCG-PilotJob services, and the blue bars show the execution efficiency. It is important

to note that the presented efficiency shouldn't be considered as the actual efficiency of the operation

of QCG-PilotJob. The values presented in these two charts are calculated in a simplified manner as

the resource-usage during the task execution phase. Since this measure is skewed by scheduling

unalignment i.e. all gaps when tasks are awaiting resources are considered as inefficiencies, the real

efficiency of operation of QCG-PilotJob during execution of tasks is higher. Note that in the case of

this scenario the bias was mitigated with the carefully selected workflow of tasks, so that gaps were

minimised, but it would have a greater impact in cases of unaligned workflows.

[D5.3 Final report on the VECMA infrastructure] Page 21 of 35

VECMA - 800925

Figure 6. The results of QCG-PilotJob performance tests from Altair when a single instance of the service was used

Figure 7. The results of QCG-PilotJob performance tests from Altair in a partitioned execution model

It is found that the performance of QCG-PilotJob is better in partitioned mode, but in general it is

relatively high regardless of the use of only a single instance of QCG-PilotJob manager or the

partitions. Both the resource utilization and efficiency metrics show a slight tendency towards

decreasing as the number of resources increases, but remains relatively high even for 38,400 cores. In

case of single instance tests, there are visible fluctuations which result from some random conditions

on the machine (e.g. a delay in launching a node), but the overall evaluation is not affected.

[D5.3 Final report on the VECMA infrastructure] Page 22 of 35

VECMA - 800925

LAMMPS-based performance tests

Having the basic performance of QCG-PilotJob validated on Altair, the strategy of testing moved from

the insertion of "sleep" commands towards the execution of more realistic computational tasks that

make use of MPI. Consequently, a relatively simple LAMMPS [3] use-case has been selected as the

basic unit of tests performed across several large-scale HPC machines.

The LAMMPS benchmark consists of an all-atom molecular dynamics simulation modelling an infinite

sheet of the 2D material graphene oxide together with a polymerised monomer parylene-C. The total

number of atoms is 85,884 and the simulation is run under an NPT ensemble where the pressure and

temperature are kept constant whilst volume of the simulation box is varied.

In contrast to the tests carried out on Altair, during the tests with LAMMPS we focused only on

executions with a single instance of QCG-PilotJob (without partitions), which provides a lower-bound

estimation for the possible performance. It should also be noted that during these tests we were able

to use the new version QCG-PilotJob Performance Tracking and Analysis Suite, which allowed us to

get the efficiency metric, which is no longer dependent on gaps in a scheduling plan, and thus present

more reliable values to discover upper limits of QCG-PilotJob.

○ ARCHER2

The first resource where the LAMMPS scenario has been executed was the preview installation of

ARCHER2. This machine, available to the project thanks to the collaboration between VECMA and the

CompBioMed Centre of Excellence [18], offered 1,000s of computing nodes. We utilised up to 800

nodes which equals 102,400 CPU cores.

Figure 8. The results of QCG-PilotJob performance tests on ARCHER2

The test results are shown in Figure 8. Similarly, to the previously presented charts, resource usage is

indicated with yellow points, and the start and finish overhead with grey bars, blue bars show the

newly introduced efficiency metric.

[D5.3 Final report on the VECMA infrastructure] Page 23 of 35

VECMA - 800925

The test results confirm relatively good performance of QCG-PilotJob, however they quite precisely

display the tendency of QCG-PilotJob to slowly drop the performance metrics for a given scenario

starting from 25,600 CPU Cores. To the largest extent, the resource usage is downgraded by the

overhead related to the start and finish of QCG-PilotJob, but also the efficiency of processing tasks

within QCG-PilotJob decreases to 91,4% for the largest use-case. Nevertheless, it should be noted

that the scenario was executed in a basic configuration with only a single instance of QCG-PilotJob

Manager. Undoubtedly, the performance would improve in case of partitioned mode of execution, as

demonstrated by the tests carried out on Altair.

As a side note, we would like to highlight that further testing of QCG-PilotJob is planned on the

full-scale 23-cabinet ARCHER2 machine that was recently officially commissioned (see above).

○ Cartesius

Within a collaboration between the VECMA project and the CompBioMed Centre of Excellence, we

deployed and tested the QCG-Pilotjob middleware on the Cartesius HPC system available at SURF

until October 2021 (the system has been recently replaced by Snellius, the current Tier 1 HPC system

at SURF [22]). The tests were executed on the “Haswell” nodes within the “thin” partition of

Cartesius, equipped with 2 × 12-core 2.6 GHz Intel Xeon E5-2690 v3 (Haswell) CPUs and 64 GB of

memory per node. To understand the performances of the workflow, we varied the number of total

jobs per node, with the size of the allocation. We tested on 50, 100, 200 and 400 compute nodes for a

total of 1200, 2400, 4800 and 9600 CPU cores jobs respectively, executing from 200 to up to 10,000

LAMMPS 6 cores runs. The test results are shown in Figure 9.

Figure 9. The results of QCG-PilotJob performance tests on Cartesius

All test scenarios show a low overhead from QCG-PilotJob. Looking at the variation of service runtime

with the total number jobs for a fixed number of total nodes, almost linear scaling is observed,

confirming that the middleware can efficiently handle the increased amount of work. Interestingly, at

[D5.3 Final report on the VECMA infrastructure] Page 24 of 35

VECMA - 800925

Cartesius we noted fluctuations in performance that were greater than those observed on Altair. It is

assumed from this that this is a common characteristic of many HPC systems, possibly due to the

temporary load, however since it causes significant inefficiencies, it should be analysed further in the

future research.

There is ongoing work to deploy QCG-PilotJob on the replacement of Cartesius, i.e. Snellius [23]. This

required preparation of the EasyBuild [14] recipe for QCG-PilotJob, which was recently completed by

SURF. After completion of other required works, we will perform tests of QCG-PilotJob also on this

new resource at SURF.

○ SuperMUC-NG

Testing of QCG-PilotJob on SuperMUC-NG has been performed iteratively through the project, but

was intensified during the block operation of the machine, which took place in mid-November 2021

and allowed us to run large test-cases without long queues. Eventually we were able to run the

LAMMPS use cases on up to 1000 nodes, which corresponds to 48,000 CPU cores. As it is presented in

Figure 10, for the tested scenarios we observed relatively large overhead caused by start and finish of

QCG-PilotJob, but the overall efficiency of the execution has remained high.

Figure 10. The results of QCG-PilotJob performance tests on SuperMUC-NG

Unfortunately, attempts to run larger test scenarios were blocked by SuperMUC-NG administrators

due to the observed instability of the SLURM system installed at the resource when it has been

subjected to many invocations of the srun command by QCG-PilotJob. Although expected to occur at

some scale, this limitation has not been discovered in the previous tests as a real issue. Therefore we

were not able to act in advance to mitigate the problem. We are currently investigating different

options of replacing the basic mechanism used by QCG-PIlotJob for launching tasks and MPI

applications. So far we proposed a relatively simple fix which replaces invocations of srun with

compatible invocations of mpirun via ssh and we are now repeating the tests with this new

mechanism on SuperMUC-NG, but sadly outside of block operation. Based on the test results we will

[D5.3 Final report on the VECMA infrastructure] Page 25 of 35

VECMA - 800925

decide whether other options, such as those presented in a recently published paper [1] for

RADICAL-Pilot, should be incorporated into QCG-PilotJob.

Summary from the performance tests

The assembly of test results shows good performance of QCG-PilotJob in execution of demanding

HTC-like test cases on up to 100,000 CPU cores. The tests have generally been successfully processed

on all resources, with the exception of SuperMUC-NG, where tests on more than 1,000 of nodes have

been declined due to the high influence of the test scenarios on SLURM. Following modification of

QCG-PilotJob, we are repeating the tests on this machine. There were also visible fluctuations of the

performance metrics on selected machines, which are likely due to the random conditions on these

resources, but should be a matter of further analysis in order to check possibilities of adjusting

QCG-PilotJob to counter such specific circumstances. We have tested QCG-PilotJob mostly in a

non-partitioned mode since it was sufficiently objective, but also because the partitioned mode is

going to be replaced soon by the Scheduling Queue service. Undoubtedly, we are looking forward to

making the performance tests of the scenarios employing this new mechanism.

2.2.3 Integration with User-level tools

The basic way of using QCG-PilotJob assumes its direct use to help and automate the execution of a

large number of users' computing tasks on HPC resources. An alternative approach is to integrate

QCG-PilotJob as an execution backend into user-facing tools. This second approach is essential in the

case of VECMA, where the EasyVVUQ [9], FabSim3 [11] and MUSCLE3 [13] tools all leverage

QCG-PilotJob to run computing tasks. Within this section we discuss how the integration has been

realised for each of these tools.

EasyVVUQ

The wide support of sampling and UQ algorithms by EasyVVUQ and its intuitive usage have resulted

in high uptake by diversified application teams. EasyVVUQ may be used on its own to perform UQ or

SA of simple simulations on a users' laptop, but it is most powerful when combined with other tools,

such as FabSim3, Dask or QCG-PilotJob, and applied to execute large use cases on large-scale

machines.

Before EasyVVUQ gained maturity, the intensive cross work package activities between WP3 and WP5

had been undertaken to enable execution of EasyVVUQ campaigns with QCG-PilotJob. In the next

section we will describe the integration of QCG-PilotJob with FabSim3, where both QCG-PilotJob and

EasyVVUQ can be combined together into the FabSim3 workflow. Here we would like to focus on the

direct integration between QCG-PilotJob and EasyVVUQ that allows the leveraging of HPC machines

for efficient and scalable execution of ensembles of tasks instantiated on a level of EasyVVUQ itself.

Due to the ongoing development of both EasyVVUQ and QCG-PilotJob, which resulted in constantly

appearing changes in the APIs or internal logic, the process of integration was iterative and divided

into the preparation of three subsequent solutions:

1. Preparation of an example workflow based on a low-level QCG-PilotJob API.

○ adaptation of an example is complicated and error-prone

2. Development of EasyVVUQ-QCGPJ (EQI) [10] as an external library integrating both tools.

○ possibility to predefine a set of optimised workflows for common scenarios

[D5.3 Final report on the VECMA infrastructure] Page 26 of 35

VECMA - 800925

○ lack of support for more sophisticated VVUQ algorithms (e.g. Markov Chain Monte

Carlo)

○ additional efforts required to install and configure EQI

○ changes in QCG-PilotJob or EasyVVUQ entail adaptation of EQI (lack of support

starting from EasyVVUQ 1.0)

3. Built-in integration of QCG-PilotJob in EasyVVUQ based on QCG-PilotJob Executor API:

○ easy installation and usage (all dependencies already available in EasyVVUQ)

○ compliance with all EasyVVUQ algorithms

○ for some scenarios possible lower efficiency in comparison to EQI

Undoubtedly, the last solution should be considered as the final one. Its realisation has been partially

grounded in the previously developed EQI library, but additional efforts were needed to make the

integration homogeneous with the concepts of pools and executors employed in EasyVVUQ from

version 1.0. Thus, a new Executor API on the QCG-PilotJob side, and a dedicated executor adapter on

the EasyVVUQ side have been developed for the VECMAtk’s M36 release. These updates allowed

QCG-PilotJob to be transparently and interchangeably used with other executors already available in

EasyVVUQ.

FabSim3

FabSim3 is a software toolkit for automating computational research activities that rely (mainly) on

the use of remote resources. It is currently in use by a wide range of application communities,

particularly in migration and epidemiological modelling. FabSim3 integrates with QCG-Client [12], as

well as with QCG-PilotJob. Although the QCG-Client integration has found little uptake during the

project, the QCG-PilotJob integration has been used extensively by a diverse user communities. This

includes communities in VECMA, as well as those in other EU projects (e.g. HiDALGO [15], STAMINA

[16]), national projects (SEAVEA [17]) as well as those further afield (e.g. by research groups at

Columbia University in the US). FabSim3 users can enable the use of QCG-PilotJob to more rapidly

allocate and execute their ensembles, simply by using a `PJ=true` flag in their command-line syntax

when submitting jobs.

FabSim3 also contains installation commands that automate the installation of QCG-PilotJob on a

number of remote machines in the VECMA testbed, such as Altair. Moving forward, we are planning

to maintain, enhance, and promote uptake of the integration of FabSim3 and QCG-PilotJob for the

duration of the newly started SEAVEA project (which runs from August 2021 until October 2024).

MUSCLE3

MUSCLE3 is the third incarnation of the MUltiScale Coupling Library and Environment, developed

independently by the University of Amsterdam and the Netherlands eScience Center (associate

partner of VECMA and contributor to the VECMA toolkit). It connects multiple submodels together

into a multiscale simulation in a flexible way and supports submodel ensembles, thus making it

possible to implement advanced Uncertainty Quantification Patterns [1]. MUSCLE3 is used in the

VECMA applications ISR3D, Fusion and Flee.

MUSCLE3 can be used in combination with EasyVVUQ for non-intrusive Uncertainty Quantification,

EasyVVUQ running multiple instances of the full MUSCLE3 simulation. This was applied in VECMA to

develop subgrid-scale surrogate models for a 2D Gray-Scott model [1]. Furthermore, a MUSCLE3

[D5.3 Final report on the VECMA infrastructure] Page 27 of 35

VECMA - 800925

extension has been developed that allows it to use QCG-PilotJob to orchestrate the many submodel

instances making up a multiscale simulation within an HPC resource allocation. Together with an

in-development resource scheduling model for multiscale simulations this will relieve the user of the

burden of manually sub-allocating resources and allow MUSCLE3 to perform optimisations, thus

making it both easier to use and more performant.

2.3 VECMA Jupyter Notebook Platform

Jupyter Notebook is a popular and grounded technology for interactive computing. The possibility to

mix documentation and live code is particularly useful for the preparation of tutorials to enable

trainees to easily familiarise themselves with a given library or API. To implement this solution in

VECMA, WP5 has configured a dedicated JupyterLab platform on the PSNC PaaS infrastructure. The1

VECMA Notebook Platform (see Annex II – VECMA Notebook Platform) [21] has been armed with a

set of functionalities and settings adjusted to the VECMA project's needs, namely:

● capability to run multiple instances of JupyterLab in parallel

● assignment of multiple CPU cores for a single JupyterLab instance

● user access based on locally created accounts, as well as using google credentials

● automatic mounting of the repository with tutorial materials

● styling of the interface in accordance with the VECMA branding

The provided platform has been used during different events organised by the VECMA project. The

platform together with a set of predefined notebook tutorials for EasyVVUQ, FabSim3, EasySurrogate,

EQI and QCG-PilotJob have been employed during all VECMA training events, during VECMA

hackathons and also individually by internal and external users, depending on their needs. As of

November 30 2021, there were 98 separate user accounts activated on the platform.

2.4 Applications and Infrastructure

The ultimate target of all actions undertaken in WP5 was to efficiently support VVUQ of multiscale

and multiphysics applications by simplification of the access to large-scale hardware resources and

optimisation of the code execution by means of user-friendly and scalable software components. The

information presented in Table 3 is a summary showing which Infrastructure elements have been

employed by particular applications, including both computing resources and software components.

For each application it also provides information about the resource requirements of the largest

problem executed to date and an estimation of resource requirements of a problem the scenario is

aiming to solve in the foreseen future, both expressed in Core Hours. For the detailed

science-oriented descriptions of VECMA applications we encourage the reader to review the WP4

documents, in particular Deliverable D4.3 [6].

Table 3. Overview on applications in the context of infrastructure usage

Name Description Resources
used

WP5 tools and
services

used

Resource
requirements (Core

Hours)

Notes (eg.
information

about
scalability tests)

Current Aiming at

UrbanAIR Simulation of air
pollution in

Eagle /
Altair,

QCG-Broker,
QCG-PilotJob,

36,864 534,528 Smooth and
efficient

1 https://jupyter.org/

[D5.3 Final report on the VECMA infrastructure] Page 28 of 35

https://jupyter.org/

VECMA - 800925

urbanised areas Tryton,
Prometheus

QCG-Client,
QCG-Now,
QCG-Monitoring

execution with
EasyVVUQ and
QCG-PJ on
Altair.

CovidSim Model of
Imperial College
for estimating
effect of Non
Pharmaceutical
Interventions

Eagle Fabsim3,
QCG-PilotJob

381,000 381,000 No issues with
scalability.
Combination
Fabsim +
QCG-PJ + Eagle
worked well.

Multiscale
Fusion
Workflow
(MFW)

Model fusion
devices on the
slow (transport)
time-scale based
on fast
(turbulence)
processes

Marconi,
Cobra,
Draco,
Raven

EasyVVUQ,
MUSCLE2,
MUSCLE3

100,000 100,000,0
00

Scalability of
the
components
has been
demonstrated.

ISR2D/3D In-stent
restenosis model
simulating post
stenting tissue
growth

Eagle,
Cartesius

MUSCLE2,
MUSCLE3

300,000 10,000,00
0

Multiscale
Migration
Prediction

An agent-based
simulation tool
predicting forced
displacement
movements

Eagle/Altair FabSim3,
FabFlee plugin,
EasyVVUQ,
QCG-PilotJob

20,480 250,000* No issues with
scalability. Uses
FabSim +
QCG-PJ.
Occasional
stability issues
with Python
module loads.

BAC A workflow to
compute binding
energies to
determine
molecules
efficiency to bind
to specific
proteins

SuperMUC EasyVVUQ,
QCG-PilotJob

2,000,000 2,000,000

FACS An agent-based
simulation tool
modelling the
spread of
COVID-19 in local
areas

Eagle/Altair FabSim3 8,192 1,000,000
**

No issues with
scalability. Uses
FabSim +
QCG-PJ.
Occasional
stability issues
with Python
module loads.

Materials Atomistic
simulations of
the material
properties of

Eagle/Altair EasyVVUQ,
QCG-PilotJob

700,000 700,000

[D5.3 Final report on the VECMA infrastructure] Page 29 of 35

VECMA - 800925

graphene

* Due to the urgent nature of conflicts, Flee simulations should be able to be run very quickly. So the (modest) 250,000

target should involve a large ensemble that can be turned around in hours.

** For FACS we are working towards a national-level model, which will rely on the newly developed parallel code.

2.5 Dissemination activities related to Work Package 5

The final 2 years of the project have allowed us to organise numerous dissemination activities

through WP5. Detailed description of these activities is one of the topics of D6.5, but we briefly

outline them here, in Table 4, as they reflect and show the direction of all activities realised under

WP5.

Table 4. The list of dissemination activities of Work Package 5

Name of activity Description

Preparation of the promotional
animation titled "QCG tools and
services for VECMA"

The 4 minutes long animation has been developed to advertise a family
of QCG services and tools, with the particular focus on QCG-PilotJob
usage in VECMA.

Preparation of the "Verification,
Validation and Uncertainty
Quantification of Large-Scale
Applications with QCG-PilotJob"
paper for MMS Workshop 2021

The paper describing usage of QCG-PilotJob in VVUQ scenarios has
been prepared for the Multiscale Modeling and Simulation workshop
collocated with the ICCS 2021 conference. The paper has been
presented and included in the conference proceedings.

Creation of poster titled
"Large-Scale Computations with
QCG-PilotJob" for ISC 2021

Preparation of poster and associated short movie for the ISC 2021
Project Poster Reception with the QCG-PilotJob tools as a main topic.

Talk titled "Leverage large-scale
HPC machines with QCG-PilotJob"
at CompBioMed Conference 2021

Talk given during CompBioMed Conference 2021 with the goal to
demonstrate applicability of QCG-PilotJob and VECMAtk to th
ComBioMed project's use cases.

Organisation of Workshop titled
"Overcome limitations of
Scheduling Systems with
QCG-PilotJob" SCFE conference

Preparation and conduction of Virtual Workshop and Training event
devoted to the usage of QCG-PilotJob in diversified computational
scenarios. The event took place as part of the Supercomputing
Frontiers Europe 2021 conference.

Organisation and participation in
VECMA training events and
hackathons

Work Package 5 representatives have organised and participated in
several VECMA trainings and hackathons where they had a role of
experts regarding access to the computing Infrastructure and usage of
WP5 software.

2.6 Collaboration with external projects

As the VECMA project progressed and the developed software matured, a number of external

projects expressed interest in the usage of the VECMAtk components. In the context of the activities

realised under the umbrella of WP5, particular popularity has been achieved by QCG-PilotJob and

FabSim3 (the middleware part of the tool from the perspective of WP5). These tools have been

recognised as being useful by such projects as CompBioMed2, SEAVEA, PIONIER-LAB and CovidSim,

and thereby applied to their use-cases. Table 5 summarises all major collaborations.

[D5.3 Final report on the VECMA infrastructure] Page 30 of 35

VECMA - 800925

Table 5. The list of projects that expressed interest in usage of VECMA Work Package 5 outcomes for their needs

Project VECMA WP5
Components

Description of use-case

ComBioMed2 QCG-PilotJob ComBioMed2 [18] seeks a tool that allows a large number of jobs
to be executed in ensemble or replica computing scenarios.
Thanks to this collaboration QCG-PilotJob has been tested on
several large-scale HPC machines, including ARCHER2 and
Cartesius. This collaboration resulted also in development of an
EasyBuild [14] recipe for QCG-PilotJob.

HiDALGO FabSim3,
QCG-PilotJob

Both tools are extensively used by the HiDALGO's [15] migration
pilot, in particular for the models of Tigrayan conflicts in Ethiopia,
which is done in collaboration with two NGOs.

SEAVEA FabSim3,
QCG-PilotJob

SEAVEA [17] essentially continues the development and
maintenance of VECMAtk, and will expand it also to include much
more surrogate modelling approaches, as well as further
improved scalability. It also includes a wide range of application
use cases, ranging from fusion to migration and biomedicine,
among many others.

PIONIER-LAB QCG,
QCG-PilotJob

PIONIER-LAB [19] is a Polish national project that constitutes a set
of specialised laboratories. PSNC is leading the project and also
the Multiscale Simulations Laboratory, where QCG and
QCG-PilotJob are planned to be used in order to support
computational use-cases.

CovidSim
Analysis

FabSim3,
QCG-PilotJob

Rapidly constructed uncertainty studies for CovidSim model [2]
upon which the UK government relied in part to model various
non-pharmaceutical intervention strategies, have been possible
thanks to joint work of FabSim3 and QCG-PilotJob

STAMINA FabSim3,
(QCG-PilotJob)

STAMINA [15] focuses on modelling pandemic spread, among
many other use cases. In the case of COVID-19 modelling, we rely
on FabSim3 to perform ensemble simulations, and make use of
QCG-PilotJob when the ensemble becomes particularly large.

ITFLOWS FabSim3 ITFLOWS [20] focuses on migration modelling. Here the modelling
of migration away from local conflicts is done using FabFlee. As
part of the project, we also perform limited-scale uncertainty
quantification.

Cloud UQ
Resources

EasyVVUQ
(QCG-PilotJob)

Utilising cloud resources to perform Monte-Carlo based

Uncertainty Quantification of fusion simulations, which builds on

the VECMA framework: EasyVVUQ with integrated QCG-PilotJob.

3 Conclusions
We have presented a summary of the activities we conducted within WP5 in the timeframe of the

VECMA project. The works committed to the VECMA system architecture development, as well as, to

[D5.3 Final report on the VECMA infrastructure] Page 31 of 35

VECMA - 800925

enable access to the computing resources for the VECMA partners have been naturally driven by the

needs of VECMA and has allowed for the progression of VECMA scientific scenarios. Many of the

tasks performed in the WP5 resulted in the creation of long-lasting outcomes, which we expect to

result in the continued uptake of the various components of VECMAtk long after the lifetime of the

VECMA project. QCG-PilotJob and FabSim3 for example are already in use by user communities across

at least half a dozen scientific disciplines, and across Europe, and beyond. It is all but certain that the

results of WP5 will be used soon much more broadly by VECMA partners, and by external

organisations. The already diverse uptake of the tools at the time of writing this deliverable, as well as

the funding of a follow-up project (SEAVEA) can be seen as an early sustainability success of the

project as a whole.

[D5.3 Final report on the VECMA infrastructure] Page 32 of 35

VECMA - 800925

4 References
1. H. Lee, A. Merzky, L. Tan, M. Titov, M. Turilli, D. Alfe, A. Bhati, A. Brace, A. Clyde, P. Coveney,

others, Scalable HPC & AI infrastructure for COVID-19 therapeutics, in: Proceedings of the

Platform for Advanced Scientific Computing Conference, 2021: pp. 1–13.

DOI:10.1145/3468267.3470573

2. D. Ye, L. Veen, A. Nikishova, J. Lakhlili, W. Edeling, O. O. Luk, V. V. Krzhizhanovskaya and A. G.

Hoekstra, “Uncertainty quantification patterns for multiscale models”, Phil. Trans. R. Soc. A.

379, 20200072 (2021), DOI:10.1098/rsta.2020.0072

3. W. Edeling, H. Arabnejad, R. Sinclair, D. Suleimenova, K. Gopalakrishnan, B. Bosak, D. Groen, I.

Mahmood, D. Crommelin, P. Coveney, “Model uncertainty and decision making: Predicting

the Impact of COVID-19 Using the CovidSim Epidemiological Code”, Nat Comput Sci 1,

128–135 (2021), DOI:10.1038/s43588-021-00028-9

4. A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in

't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott,

S. J. Plimpton, “LAMMPS - a flexible simulation tool for particle-based materials modeling at

the atomic, meso, and continuum scales”, Comp Phys Comm, 271 (2022) 10817.

5. https://www.vecma.eu/wp-content/uploads/2019/12/VECMA_D5.2_First-Report-Infrastructu

re_PSNC_20191208.pdf

6. https://www.vecma.eu/wp-content/uploads/2019/03/VECMA_D5.1_Architecture_PSNC_v1.0

_20190312.pdf

7. https://www.vecma.eu/wp-content/uploads/2021/06/VECMA_D4.3_On-the-Implementation

-of-VVUQ-Techniques_MPG_v1.0_20210608.pdf

8. VECMA toolkit: https://www.vecma-toolkit.eu/

9. QCG-PilotJob: https://qcg-pilotjob.readthedocs.io

10. EasyVVUQ: https://easyvvuq.readthedocs.io

11. EasyVVUQ-QCGPJ (EQI): https://easyvvuq-qcgpj.readthedocs.io

12. FabSim3: https://fabsim3.readthedocs.io

13. QCG: http://qcg.psnc.pl

14. MUSCLE3: https://muscle3.readthedocs.io

15. EasyBuild: https://easybuild.io/

16. HiDALGO: https://hidalgo-project.eu/

17. STAMINA: https://stamina-project.eu

18. SEAVEA: https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/W007762/1

19. CompBioMed2: https://www.compbiomed.eu/

20. PIONIER-LAB: https://pionier-lab.pionier.net.pl/

21. ITFLOWS: https://www.itflows.eu

22. VECMA Notebook Platform: https://jupyter.vecma.psnc.pl

23. Snellius supercomputer: https://servicedesk.surfsara.nl/wiki/display/WIKI/Snellius

24. Altair supercomputer:

https://www.psnc.pl/altair-supercomputer-is-fully-operational-and-ready-to-go/

[D5.3 Final report on the VECMA infrastructure] Page 33 of 35

https://www.doi.org/
https://www.doi.org/
https://www.vecma.eu/wp-content/uploads/2019/12/VECMA_D5.2_First-Report-Infrastructure_PSNC_20191208.pdf
https://www.vecma.eu/wp-content/uploads/2019/12/VECMA_D5.2_First-Report-Infrastructure_PSNC_20191208.pdf
https://www.vecma.eu/wp-content/uploads/2019/03/VECMA_D5.1_Architecture_PSNC_v1.0_20190312.pdf
https://www.vecma.eu/wp-content/uploads/2019/03/VECMA_D5.1_Architecture_PSNC_v1.0_20190312.pdf
https://www.vecma.eu/wp-content/uploads/2021/06/VECMA_D4.3_On-the-Implementation-of-VVUQ-Techniques_MPG_v1.0_20210608.pdf
https://www.vecma.eu/wp-content/uploads/2021/06/VECMA_D4.3_On-the-Implementation-of-VVUQ-Techniques_MPG_v1.0_20210608.pdf
https://www.vecma-toolkit.eu/
https://qcg-pilotjob.readthedocs.io
https://easyvvuq.readthedocs.io
https://easyvvuq-qcgpj.readthedocs.io
https://fabsim3.readthedocs.io
http://qcg.psnc.pl
https://muscle3.readthedocs.io
https://easybuild.io/
https://hidalgo-project.eu/
https://stamina-project.eu
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/W007762/1
https://www.compbiomed.eu/
https://pionier-lab.pionier.net.pl/
https://www.itflows.eu
https://jupyter.vecma.psnc.pl
https://servicedesk.surfsara.nl/wiki/display/WIKI/Snellius
https://www.psnc.pl/altair-supercomputer-is-fully-operational-and-ready-to-go/

VECMA - 800925

● Annex I – QCG-PilotJob Documentation

[D5.3 Final report on the VECMA infrastructure] Page 34 of 35

VECMA - 800925

● Annex II – VECMA Notebook Platform

[D5.3 Final report on the VECMA infrastructure] Page 35 of 35

